Answer:
4082
Explanation:
Given
The composite object
Required
The volume
The object is a mix of a cone and a hemisphere
Such that:
Cone
---- radius (r = 20/2)
![h = 19cm](https://img.qammunity.org/2022/formulas/mathematics/college/hal135o2f4efgpcl1k19xzr3u9kk4k8a0z.png)
Hemisphere
![r=10cm](https://img.qammunity.org/2022/formulas/mathematics/college/r9mmwhu8tr88t84ymzdx4h6kttmyydlj7l.png)
The volume of the cone is:
![V_1 = (1)/(3)\pi r^2h](https://img.qammunity.org/2022/formulas/mathematics/high-school/j2l4kvmhuc9uz7kcglnxdo5goaccphkl4l.png)
![V_1 = (1)/(3)\pi * 10^2 * 19](https://img.qammunity.org/2022/formulas/mathematics/college/6db9hfy3wklctdkm5im5etpzs1y70t6jra.png)
![V_1 = (1900)/(3)\pi](https://img.qammunity.org/2022/formulas/mathematics/college/ai09zagz2e03b92sqrnx1b1yjuo9halmv7.png)
The volume of the hemisphere is:
![V_2 = (2)/(3)\pi r^3](https://img.qammunity.org/2022/formulas/mathematics/college/73j4gz1t72go85wvbusu9vtltskm0dccbs.png)
![V_2 = (2)/(3)\pi 10^3](https://img.qammunity.org/2022/formulas/mathematics/college/cshe4afpfz4mv74w5rmhmf3319j9fqfqbx.png)
![V_2 = (2000)/(3)\pi](https://img.qammunity.org/2022/formulas/mathematics/college/pbundffya2yujubhzorf6q4mcjgkdnnd4y.png)
So, the volume of the object is:
![V = V_1 + V_2](https://img.qammunity.org/2022/formulas/mathematics/high-school/lacv4fld6yfxjcdpar06k4lphugibv524e.png)
![V = (1900)/(3)\pi + (2000)/(3)\pi](https://img.qammunity.org/2022/formulas/mathematics/college/da4fjd3abvv43cjkq8cxrlzrarlkwd9wzx.png)
![V = (3900)/(3)\pi](https://img.qammunity.org/2022/formulas/mathematics/college/xrhc8e0t9kknx0oyz1wnmk0pxq0ot5dl0f.png)
![V = 1300\pi](https://img.qammunity.org/2022/formulas/mathematics/college/gfpn5de5o578bz06jpgq2044np0arf3dqv.png)
![V = 1300 * 3.14](https://img.qammunity.org/2022/formulas/mathematics/college/d8yk1veo9telb2cpchxen96q7otj5hrpmq.png)
![V = 4082](https://img.qammunity.org/2022/formulas/mathematics/college/nx1adfzpy526z8pjzme1g8aljyyb3mbj4e.png)