59.4k views
5 votes
Find The derivative of:(cosx/1+sinx)^3​

1 Answer

7 votes

Answer:


-(3 \cdot cos^2x)/((1+sinx)^3)

Explanation:


y = ((cosx)/(1+sinx))^3\\\\(dy)/(dx) = 3 \cdot ((cosx)/(1+sinx))^2 \cdot (dy)/(dx)((cosx)/(1+sinx))
[ y = x^n\ \ \ => \ \ \ (dy)/(dx) = b \cdot x^(n-1) \ ]


= 3 \cdot ((cosx)/(1+sinx))^2 \cdot ((1+sin x(-sinx) - cosx(cosx))/((1+sinx)^2)\\\\
[\ (u)/(v) = (v \dcot u'- u \cdot v')/(v^2)\ ]


= 3 \cdot ((cosx)/(1+sinx))^2 \cdot (-sin x-sin^2x- cos^2x)/((1+sinx)^2)\\\\= 3 \cdot ((cosx)/(1+sinx))^2 \cdot (-sin x- (sin^2x+ cos^2x))/((1+sinx)^2)\\\\= 3 \cdot ((cosx)/(1+sinx))^2 \cdot (-sin x-1)/((1+sinx)^2)\\\\= 3 \cdot ((cosx)/(1+sinx))^2 \cdot (-1 \cdot(sin x+1))/((1+sinx)^2)\\\\= 3 \cdot ((cosx)/(1+sinx))^2 \cdot (-1)/((1+sinx))\\\\


= -3 \cdot (cos^2x)/((1+sinx)^3)

User Ezaldeen Sahb
by
4.5k points