220k views
2 votes
2x²+5x-3=0
using completing the square method​

User Ranieri
by
4.0k points

2 Answers

0 votes

Answer:


2 {x}^(2) + 5x - 3 = 0 \\ 2( {x}^(2) + (5)/(2) x - (3)/(2) ) = 0 \\ 2( {x}^(2) + (5)/(2) x + {( (5)/(4) )}^(2) ) - (3)/(2) - {( (5)/(4) )}^(2) ) = 0 \\ ( {(x + (5)/(4) )}^(2) = (49)/(16) \\ x + (5)/(4) = ± (7)/(4) \\ x = 0.5 \: \: and \: \: 3

User Pvel
by
3.2k points
6 votes

Answer:

x=
(1)/(2) or x= -3

Explanation:


\boxed{x^(2) +kx=(x+(k)/(2))^(2) -((k)/(2))^(2) }

First ensure that the coefficient of x² is 1.

x² +
(5)/(2)x -
(3)/(2)= 0

[x +(
(5)/(2) ÷2)]² -(
(5)/(2) ÷2)² -
(3)/(2)= 0

(x +
(5)/(4))² -(
(5)/(4))² -
(3)/(2)= 0

(x +
(5)/(4))²-
(25)/(16) -
(3)/(2)= 0

(x +
(5)/(4))² -
(49)/(16)= 0

(x +
(5)/(4))²=
(49)/(16)

x +
(5)/(4)=
\sqrt{(49)/(16) } (square root both sides)

x +
(5)/(4)= ±
(7)/(4)

x= -
(5)/(4) +
(7)/(4) or x= -
(5)/(4) -
(7)/(4)

x=
(1)/(2) or x= -3

User Tom Wuttke
by
3.7k points