220k views
2 votes
2x²+5x-3=0
using completing the square method​

User Ranieri
by
8.5k points

2 Answers

0 votes

Answer:


2 {x}^(2) + 5x - 3 = 0 \\ 2( {x}^(2) + (5)/(2) x - (3)/(2) ) = 0 \\ 2( {x}^(2) + (5)/(2) x + {( (5)/(4) )}^(2) ) - (3)/(2) - {( (5)/(4) )}^(2) ) = 0 \\ ( {(x + (5)/(4) )}^(2) = (49)/(16) \\ x + (5)/(4) = ± (7)/(4) \\ x = 0.5 \: \: and \: \: 3

User Pvel
by
7.8k points
6 votes

Answer:

x=
(1)/(2) or x= -3

Explanation:


\boxed{x^(2) +kx=(x+(k)/(2))^(2) -((k)/(2))^(2) }

First ensure that the coefficient of x² is 1.

x² +
(5)/(2)x -
(3)/(2)= 0

[x +(
(5)/(2) ÷2)]² -(
(5)/(2) ÷2)² -
(3)/(2)= 0

(x +
(5)/(4))² -(
(5)/(4))² -
(3)/(2)= 0

(x +
(5)/(4))²-
(25)/(16) -
(3)/(2)= 0

(x +
(5)/(4))² -
(49)/(16)= 0

(x +
(5)/(4))²=
(49)/(16)

x +
(5)/(4)=
\sqrt{(49)/(16) } (square root both sides)

x +
(5)/(4)= ±
(7)/(4)

x= -
(5)/(4) +
(7)/(4) or x= -
(5)/(4) -
(7)/(4)

x=
(1)/(2) or x= -3

User Tom Wuttke
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories