233k views
3 votes
Find the derivative
f (x ) = (x-5)^2 (3-x)^2​

1 Answer

1 vote

Given:

The function is


f(x)=(x-5)^2(3-x)^2

To find:

The derivative of the given function.

Solution:

Chain rule of differentiation:


[f(g(x))]'=f'(g(x))g'(x)

Product rule of differentiation:


[f(x)g(x)]'=f(x)g'(x)+g(x)f'(x)

We have,


f(x)=(x-5)^2(3-x)^2

Differentiate with respect to x.


f'(x)=(x-5)^2(d)/(dx)(3-x)^2+(3-x)^2(d)/(dx)(x-5)^2


f'(x)=(x-5)^2[2(3-x)(0-1)]+(3-x)^2[2(x-5)(1-0)]


f'(x)=(x^2-10x+25)(-6+2x)+(9-6x+x^2)(2x-10)


f'(x)=(x^2)(-6)+(-10x)(-6)+(25)(-6)+(x^2)(2x)-10x(2x)+25(2x)+(9)(2x)+(-6x)(2x)+x^2(2x)+9(-10)+(-6x)(-10)+x^2(-10)

On further simplification, we get


f'(x)=-6x^2+60x-150+2x^3-20x^2+50x+18x-12x^2+2x^3-90+60x-10x^2


f'(x)=(2x^3+2x^3)+(-6x^2-20x^2-12x^2-10x^2)+(60x+50x+18x+60x)+(-90-150)


f'(x)=4x^3-48x^2+188x-240

Therefore, the derivative of the given function is
f'(x)=4x^3-48x^2+188x-240.

User Dmitry Shintyakov
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories