Given:
The function is
![f(x)=(x-5)^2(3-x)^2](https://img.qammunity.org/2022/formulas/mathematics/college/tqclz7jukl09xvn1px2tfouu92pck89ygq.png)
To find:
The derivative of the given function.
Solution:
Chain rule of differentiation:
![[f(g(x))]'=f'(g(x))g'(x)](https://img.qammunity.org/2022/formulas/mathematics/college/m7b4h3lgfqsxmsfpqykkv6etc1nwmzp4ue.png)
Product rule of differentiation:
![[f(x)g(x)]'=f(x)g'(x)+g(x)f'(x)](https://img.qammunity.org/2022/formulas/mathematics/college/89royu0ewgs5tw30gkeyn1thxgxdw8iqxc.png)
We have,
![f(x)=(x-5)^2(3-x)^2](https://img.qammunity.org/2022/formulas/mathematics/college/tqclz7jukl09xvn1px2tfouu92pck89ygq.png)
Differentiate with respect to x.
![f'(x)=(x-5)^2(d)/(dx)(3-x)^2+(3-x)^2(d)/(dx)(x-5)^2](https://img.qammunity.org/2022/formulas/mathematics/college/d63qc5my0xzj89mz69hdfm2214fnvvg1gt.png)
![f'(x)=(x-5)^2[2(3-x)(0-1)]+(3-x)^2[2(x-5)(1-0)]](https://img.qammunity.org/2022/formulas/mathematics/college/x0h90tesnpcxhebc2iu9jblshkhqlzed8u.png)
![f'(x)=(x^2-10x+25)(-6+2x)+(9-6x+x^2)(2x-10)](https://img.qammunity.org/2022/formulas/mathematics/college/gq4ejhyjbflm7nj6zlwe4w5q7tpv6yhy1a.png)
![f'(x)=(x^2)(-6)+(-10x)(-6)+(25)(-6)+(x^2)(2x)-10x(2x)+25(2x)+(9)(2x)+(-6x)(2x)+x^2(2x)+9(-10)+(-6x)(-10)+x^2(-10)](https://img.qammunity.org/2022/formulas/mathematics/college/7e7kpmxbea12es9zdt2jre9y4xupgmoaho.png)
On further simplification, we get
![f'(x)=-6x^2+60x-150+2x^3-20x^2+50x+18x-12x^2+2x^3-90+60x-10x^2](https://img.qammunity.org/2022/formulas/mathematics/college/eshn1vw019rqe1fgvzezutit8l594u3zpy.png)
![f'(x)=(2x^3+2x^3)+(-6x^2-20x^2-12x^2-10x^2)+(60x+50x+18x+60x)+(-90-150)](https://img.qammunity.org/2022/formulas/mathematics/college/4nmj8ijii8dmg5pjuvee12ztlmou5nilvi.png)
![f'(x)=4x^3-48x^2+188x-240](https://img.qammunity.org/2022/formulas/mathematics/college/x318wk539mukmily6r3d40oxvialxkcroh.png)
Therefore, the derivative of the given function is
.