1.3k views
4 votes
What is the simplest radical form of the expression?
(8x^7y^4)^2/3

What is the simplest radical form of the expression? (8x^7y^4)^2/3-example-1

1 Answer

7 votes

Answer:


4x^4y^2\sqrt[3]{x^2y^2}

Explanation:

Recall that
a^{((b)/(c))}=\sqrt[c]{a^b}.

Therefore, we have:


(8x^7y^4)^{(2)/(3)}=\sqrt[3]{(8x^7y^4)^2}

Use the exponent property
(a^b)^c=a^((b\cdot c)) to simplify:


(8x^7y^4)^{(2)/(3)}=\sqrt[3]{(8x^7y^4)^2}=\sqrt[3]{64x^(14)y^8}=\boxed{4x^4y^2\sqrt[3]{x^2y^2}}

User Tim Fulmer
by
4.8k points