Answer:
A. 9x2
Explanation:
Graph the parabola using the direction, vertex, focus, and axis of symmetry.
Direction: Opens Up
Vertex:
(
0
,
0
)
Focus:
(
0
,
1
36
)
Axis of Symmetry:
x
=
0
Directrix:
y
=
−
1
36
x
y
−
1
9
0
0
1
9
Graph the parabola using the direction, vertex, focus, and axis of symmetry.
Direction: Opens Up
Vertex:
(
0
,
0
)
Focus:
(
0
,
5
8
)
Axis of Symmetry:
x
=
0
Directrix:
y
=
−
5
8
x
y
−
2
8
5
−
1
2
5
0
0
1
2
5
2
8
5
Graph the parabola using the direction, vertex, focus, and axis of symmetry.
Direction: Opens Down
Vertex:
(
0
,
0
)
Focus:
(
0
,
−
1
40
)
Axis of Symmetry:
x
=
0
Directrix:
y
=
1
40
x
y
−
1
−
10
0
0
1
−
10
Graph the parabola using the direction, vertex, focus, and axis of symmetry.
Direction: Opens Down
Vertex:
(
0
,
0
)
Focus:
(
0
,
−
0.2
¯
7
)
Axis of Symmetry:
x
=
0
Directrix:
y
=
0.2
¯
7
x
y
−
2
−
3.6
−
1
−
0.9
0
0
1
−
0.9
2
−
3.6