Given:
Center of a circle is at point C(-1,2).
AB is the diameter of the circle.
Coordinates of the point A are A(2,6).
To find:
The coordinates of point B.
Solution:
Let the coordinates of point B are (a,b).
If AB is the diameter of the circle, then A and B are end points of diameter of the circle and the center C is the midpoint of AB.
![Midpoint=\left((x_1+x_2)/(2),(y_1+y_2)/(2)\right)](https://img.qammunity.org/2022/formulas/mathematics/college/ej12unagq872xsay3nec0mk8wdb0s1fbkk.png)
Point C = Midpoint of AB
![(-1,2)=\left((2+a)/(2),(6+b)/(2)\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/4xy97urwlluvasm12vpjotokpo6ewqiuy7.png)
On comparing both sides, we get
![(2+a)/(2)=-1](https://img.qammunity.org/2022/formulas/mathematics/high-school/wrfb5y2xfndnx8rtkgjfx2wjphlk5bfp3u.png)
![2+a=-1* 2](https://img.qammunity.org/2022/formulas/mathematics/high-school/zscloak2s5gf4vq41qop2b373ja997mvz5.png)
![a=-2-2](https://img.qammunity.org/2022/formulas/mathematics/high-school/v56a7zbkifzf8sxbgru4o5lb9189wqg2x3.png)
![a=-4](https://img.qammunity.org/2022/formulas/mathematics/high-school/jip7e7di6t2wxxp7w23bqmnjxaifvgtldj.png)
Similarly,
![(6+b)/(2)=2](https://img.qammunity.org/2022/formulas/mathematics/high-school/by4mvgnve196jgzsf140xv7157uzlulyme.png)
![6+b=2* 2](https://img.qammunity.org/2022/formulas/mathematics/high-school/68gagpk03b55cheqv3pzv62dm7tdyxu92g.png)
![b=4-6](https://img.qammunity.org/2022/formulas/mathematics/high-school/ynwws38j0aet9b9zcw9tmnnappxbswp3cl.png)
![b=-2](https://img.qammunity.org/2022/formulas/mathematics/high-school/ewthc2c26npjv6riywtfvtfyxjaq1ah0hp.png)
Therefore, the coordinates of point B are (-4,-2).