Answer:
![x \approx 2.278863](https://img.qammunity.org/2022/formulas/mathematics/college/4xu53k2od93tjstdamddtbrhda9jo42xmu.png)
Explanation:
Required
The positive root of
![3\sin(x) = x](https://img.qammunity.org/2022/formulas/mathematics/college/6mrtbvjzddh7nytchc5qslx8w3c3r3il9o.png)
Equate to 0
![0 = x -3\sin(x)](https://img.qammunity.org/2022/formulas/mathematics/college/z2xck39x5z42hst3j34bsrn3bjp0trsj5c.png)
So, we have our function to be:
![h(x) = x -3\sin(x)](https://img.qammunity.org/2022/formulas/mathematics/college/qm9ov49hnc6ugaln8ma8sabrpdswpxfreg.png)
Differentiate the above function:
![h'(x) = 1 -3\cos(x)](https://img.qammunity.org/2022/formulas/mathematics/college/1o5b4b4eyaj6vkfijc6fk63wvowx7yeq4b.png)
Using Newton's method of approximation, we have:
![x_(n+1) = x_n - (h(x_n))/(h'(x_n))](https://img.qammunity.org/2022/formulas/mathematics/college/c1c0m863a6upy7ch61shazqpfynh4edgkd.png)
Plot the graph of
to get
--- see attachment for graph
From the attached graph, the first value of x is at 2.2; so:
![x_1 = 2.2](https://img.qammunity.org/2022/formulas/mathematics/college/a638bfbqct0gjeqwfra3q6x3toild1ol86.png)
So, we have:
![x_(n+1) = x_n - (h(x_n))/(h'(x_n))](https://img.qammunity.org/2022/formulas/mathematics/college/c1c0m863a6upy7ch61shazqpfynh4edgkd.png)
![x_(1+1) = x_1 - (h(x_1))/(h'(x_1))](https://img.qammunity.org/2022/formulas/mathematics/college/i3jb5d1o4g3ehkzyv75z26wysidbfto3kb.png)
![x_(2) = 2.2 - (2.2 -3\sin(2.2))/(1 -3\cos(2.2)) = 2.28153641](https://img.qammunity.org/2022/formulas/mathematics/college/jb2zkneom4y685jm44i0uqiquwye6nh87b.png)
The process will be repeated until the digit in the 6th decimal place remains unchanged
![x_(3) = 2.28153641 - (2.28153641 -3\sin(2.28153641))/(1 -3\cos(2.28153641)) = 2.2788654](https://img.qammunity.org/2022/formulas/mathematics/college/p03w3g6dgs2l689l52sxkic1mtyoep8mik.png)
![x_(4) = 2.2788654 - (2.2788654 -3\sin(2.2788654))/(1 -3\cos(2.2788654)) = 2.2788627](https://img.qammunity.org/2022/formulas/mathematics/college/i6blsj9a7xjlglbgbxn4yhj415el9nlxkz.png)
![x_(5) = 2.2788627 - (2.2788627-3\sin(2.2788627))/(1 -3\cos(2.2788627)) = 2.2788627](https://img.qammunity.org/2022/formulas/mathematics/college/y95irdb6i6jcdwmz3y4u20bhgdp2rrgu8s.png)
Hence: