Answer:
3
Explanation:
r(x) = 0.01(x + 2)(x^2 - 9)
We are looking fo the value of x at which r(x) = 0.
We set the function equal to 0 and solve for x.
0.01(x + 2)(x^2 - 9) = 0
Divide both sides by 0.01. Factor x^2 - 9 as the difference of two squares.
(x + 2)(x + 3)(x - 3) = 0
x + 2 = 0 or x + 3 = 0 or x - 3 = 0
x = -2 or x = -3 or x = 3
Since we are looking for a time after the experiment started, and it started at x = 0, we discard the negative answers, and we keep x = 3.
Answer: 3