103k views
3 votes
Find the exact value of cos2theta if sin2theta=3/4 and theta is between 0 and 90 degree

1 Answer

3 votes

Answer :


\boxed{ \boxed{ \cos {}^(2) ( \theta) = (1)/(4) }}

Solution :

According to a Trigonometric Identity :


\hookrightarrow \mathrm{\sin {}^(2) ( \theta) + \cos {}^(2) ( \theta) = 1}

Now, let's solve for
\cosĀ²(\theta)


\longrightarrow (3)/(4) + \cos {}^(2) ( \theta) = 1


\longrightarrow \cos{}^(2)( \theta) = 1 - (3)/(4)


\longrightarrow \cos {}^(2) ( \theta) = (4 - 3)/(4)


\longrightarrow \cos {}^(2) ( \theta) = (1)/(4)


\large\mathfrak{{\pmb{\underline{\orange{hope \: \: it \: \: helps \: \: you.....}}{\orange{}}}}}

User Talvi Watia
by
4.2k points