36.4k views
0 votes
Given tan theta =9, use trigonometric identities to find the exact value of each of the following:_______

a) sec sqr Theta
b) Cot theta
c) cot (pie/2-Theta)
d) csc sqr theta

1 Answer

6 votes

Answer:


(a)\ \sec^2(\theta) = 82


(b)\ \cot(\theta) = (1)/(9)


(c)\ \cot((\pi)/(2) - \theta) = 9


(d)\ \csc^2(\theta) = (82)/(81)

Explanation:

Given


\tan(\theta) = 9

Required

Solve (a) to (d)

Using tan formula, we have:


\tan(\theta) = (Opposite)/(Adjacent)

This gives:


(Opposite)/(Adjacent) = 9

Rewrite as:


(Opposite)/(Adjacent) = (9)/(1)

Using a unit ratio;


Opposite = 9; Adjacent = 1

Using Pythagoras theorem, we have:


Hypotenuse^2 = Opposite^2 + Adjacent^2


Hypotenuse^2 = 9^2 + 1^2


Hypotenuse^2 = 81 + 1


Hypotenuse^2 = 82

Take square roots of both sides


Hypotenuse =√(82)

So, we have:


Opposite = 9; Adjacent = 1


Hypotenuse =√(82)

Solving (a):


\sec^2(\theta)

This is calculated as:


\sec^2(\theta) = (\sec(\theta))^2


\sec^2(\theta) = ((1)/(\cos(\theta)))^2

Where:


\cos(\theta) = (Adjacent)/(Hypotenuse)


\cos(\theta) = (1)/(√(82))

So:


\sec^2(\theta) = ((1)/(\cos(\theta)))^2


\sec^2(\theta) = ((1)/((1)/(√(82))))^2


\sec^2(\theta) = (√(82))^2


\sec^2(\theta) = 82

Solving (b):


\cot(\theta)

This is calculated as:


\cot(\theta) = (1)/(\tan(\theta))

Where:


\tan(\theta) = 9 ---- given

So:


\cot(\theta) = (1)/(\tan(\theta))


\cot(\theta) = (1)/(9)

Solving (c):


\cot((\pi)/(2) - \theta)

In trigonometry:


\cot((\pi)/(2) - \theta) = \tan(\theta)

Hence:


\cot((\pi)/(2) - \theta) = 9

Solving (d):


\csc^2(\theta)

This is calculated as:


\csc^2(\theta) = (\csc(\theta))^2


\csc^2(\theta) = ((1)/(\sin(\theta)))^2

Where:


\sin(\theta) = (Opposite)/(Hypotenuse)


\sin(\theta) = (9)/(√(82))

So:


\csc^2(\theta) = ((1)/((9)/(√(82))))^2


\csc^2(\theta) = ((√(82))/(9))^2


\csc^2(\theta) = (82)/(81)

User Anik
by
4.8k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.