Answer:
![(a)\ \sec^2(\theta) = 82](https://img.qammunity.org/2022/formulas/mathematics/college/rcc7tvc3cts3twatxsm8rmrym3geb4yn2s.png)
![(b)\ \cot(\theta) = (1)/(9)](https://img.qammunity.org/2022/formulas/mathematics/college/yqslar2rtfe6h9xhpxyh1l7vge8cgspy0i.png)
![(c)\ \cot((\pi)/(2) - \theta) = 9](https://img.qammunity.org/2022/formulas/mathematics/college/lrsdvboirb61x07lju40w20nd0hrblz0n7.png)
![(d)\ \csc^2(\theta) = (82)/(81)](https://img.qammunity.org/2022/formulas/mathematics/college/1j9de3441v1n4b0n99k3sz7lrp5lxxojwp.png)
Explanation:
Given
![\tan(\theta) = 9](https://img.qammunity.org/2022/formulas/mathematics/college/okfffm7x1ejaeuik17lstd75wzweuh35w8.png)
Required
Solve (a) to (d)
Using tan formula, we have:
![\tan(\theta) = (Opposite)/(Adjacent)](https://img.qammunity.org/2022/formulas/engineering/college/8lgbuf2nmffde5u7m2zb7ij6ohweat9q88.png)
This gives:
![(Opposite)/(Adjacent) = 9](https://img.qammunity.org/2022/formulas/mathematics/college/rpuiwxawnygye3l464gx4ge38kvw5r6gcs.png)
Rewrite as:
![(Opposite)/(Adjacent) = (9)/(1)](https://img.qammunity.org/2022/formulas/mathematics/college/puk7sb6h2cttc9siizeokknrox8spz2opy.png)
Using a unit ratio;
![Opposite = 9; Adjacent = 1](https://img.qammunity.org/2022/formulas/mathematics/college/ls7esoktxli58e3rgq9isr7j8msocr7kzh.png)
Using Pythagoras theorem, we have:
![Hypotenuse^2 = Opposite^2 + Adjacent^2](https://img.qammunity.org/2022/formulas/engineering/college/7yg8teqao75m1wnjghvapwff1q7aq7b4q5.png)
![Hypotenuse^2 = 9^2 + 1^2](https://img.qammunity.org/2022/formulas/mathematics/college/jrrpjuypyfxbswk8xo1yssedbgaty59m6y.png)
![Hypotenuse^2 = 81 + 1](https://img.qammunity.org/2022/formulas/mathematics/college/h5nxxoeqjd3t3vccm2kwmog41inmrqxb9j.png)
![Hypotenuse^2 = 82](https://img.qammunity.org/2022/formulas/mathematics/college/j8qwro0n57pt87jaoesu53bw2915ldzhe0.png)
Take square roots of both sides
![Hypotenuse =√(82)](https://img.qammunity.org/2022/formulas/mathematics/college/hy0hemmwfq8gbg4ykza2xa0r0o9kedhavz.png)
So, we have:
![Opposite = 9; Adjacent = 1](https://img.qammunity.org/2022/formulas/mathematics/college/ls7esoktxli58e3rgq9isr7j8msocr7kzh.png)
![Hypotenuse =√(82)](https://img.qammunity.org/2022/formulas/mathematics/college/hy0hemmwfq8gbg4ykza2xa0r0o9kedhavz.png)
Solving (a):
![\sec^2(\theta)](https://img.qammunity.org/2022/formulas/mathematics/college/cg21mjyryxszsdh4be36730svm20exlleu.png)
This is calculated as:
![\sec^2(\theta) = (\sec(\theta))^2](https://img.qammunity.org/2022/formulas/mathematics/college/2xpz7710spe2kqi9kjtmqrebsdvqt4k970.png)
![\sec^2(\theta) = ((1)/(\cos(\theta)))^2](https://img.qammunity.org/2022/formulas/mathematics/college/5clgagcmnte51uc1vxwymv7wr1vu9qg6zl.png)
Where:
![\cos(\theta) = (Adjacent)/(Hypotenuse)](https://img.qammunity.org/2022/formulas/mathematics/high-school/og5zbcb35rtn9rd737qidv2wny68bw7bzv.png)
![\cos(\theta) = (1)/(√(82))](https://img.qammunity.org/2022/formulas/mathematics/college/qmq38psrsly2kl6cu3desymd6ouhsacmzg.png)
So:
![\sec^2(\theta) = ((1)/(\cos(\theta)))^2](https://img.qammunity.org/2022/formulas/mathematics/college/5clgagcmnte51uc1vxwymv7wr1vu9qg6zl.png)
![\sec^2(\theta) = ((1)/((1)/(√(82))))^2](https://img.qammunity.org/2022/formulas/mathematics/college/lk8mjxiiozko6htn55f3ltvk3su6ijz0gq.png)
![\sec^2(\theta) = (√(82))^2](https://img.qammunity.org/2022/formulas/mathematics/college/i9wbkdp1txjexbidtr34bvo6k5pvo165dh.png)
![\sec^2(\theta) = 82](https://img.qammunity.org/2022/formulas/mathematics/college/dgyzt9zyhjxup4430kj7z5o7nxz9btkpsj.png)
Solving (b):
![\cot(\theta)](https://img.qammunity.org/2022/formulas/mathematics/college/40sjy2wnnbib2q2sq4qcps5j9jhdbhn1f8.png)
This is calculated as:
![\cot(\theta) = (1)/(\tan(\theta))](https://img.qammunity.org/2022/formulas/mathematics/college/tredy2geompr2i3f2gy037b54tzr5fcskr.png)
Where:
---- given
So:
![\cot(\theta) = (1)/(\tan(\theta))](https://img.qammunity.org/2022/formulas/mathematics/college/tredy2geompr2i3f2gy037b54tzr5fcskr.png)
![\cot(\theta) = (1)/(9)](https://img.qammunity.org/2022/formulas/mathematics/college/ks128hniuhoxac1vvi5av00qa9fkqw7hkn.png)
Solving (c):
![\cot((\pi)/(2) - \theta)](https://img.qammunity.org/2022/formulas/mathematics/college/pzc12zshhajxvp9yjdsrf9aiho6kq376tg.png)
In trigonometry:
![\cot((\pi)/(2) - \theta) = \tan(\theta)](https://img.qammunity.org/2022/formulas/mathematics/college/a15uztgpwcwmggv7qgkt0v1w1ph5tfdprk.png)
Hence:
![\cot((\pi)/(2) - \theta) = 9](https://img.qammunity.org/2022/formulas/mathematics/college/c2op1iavxbkmwfpbnbsswqcaizi9cekypr.png)
Solving (d):
![\csc^2(\theta)](https://img.qammunity.org/2022/formulas/mathematics/college/6g4wcms9zrabykarduiny42nptkrxuzdsf.png)
This is calculated as:
![\csc^2(\theta) = (\csc(\theta))^2](https://img.qammunity.org/2022/formulas/mathematics/college/x5filhqplg2ssdlrj4epfve4uc90hit48b.png)
![\csc^2(\theta) = ((1)/(\sin(\theta)))^2](https://img.qammunity.org/2022/formulas/mathematics/college/rciwau0wsv2m294hxj925iq98i7xlzylbo.png)
Where:
![\sin(\theta) = (Opposite)/(Hypotenuse)](https://img.qammunity.org/2022/formulas/mathematics/college/66dgk91pzkuxsvrgmlojqtgb2bxt3cs181.png)
![\sin(\theta) = (9)/(√(82))](https://img.qammunity.org/2022/formulas/mathematics/college/iathqzoqx05afsphaejg5fbtszzojdxysb.png)
So:
![\csc^2(\theta) = ((1)/((9)/(√(82))))^2](https://img.qammunity.org/2022/formulas/mathematics/college/32vf5ikprau746cp67tdxwzjbhy21c3yds.png)
![\csc^2(\theta) = ((√(82))/(9))^2](https://img.qammunity.org/2022/formulas/mathematics/college/jocpwh90ascjnqvzjp4ge99czw0lfkl5wa.png)
![\csc^2(\theta) = (82)/(81)](https://img.qammunity.org/2022/formulas/mathematics/college/irjqldv8nkats7cfzbgzp7dmpqi1ita4db.png)