71.7k views
0 votes
Find the limit of the function algebraically. Lim=-5 x^2-25/x+5

User Aman Garg
by
4.8k points

1 Answer

0 votes

Answer:


\displaystyle \lim_(x \to 5) (x^2 - 25)/(x + 5) = 0

General Formulas and Concepts:

Algebra I

Terms/Coefficients

  • Factoring

Calculus

Limits

Limit Rule [Variable Direct Substitution]:
\displaystyle \lim_(x \to c) x = c

Explanation:

Step 1: Define

Identify


\displaystyle \lim_(x \to 5) (x^2 - 25)/(x + 5)

Step 2: Evaluate

  1. Factor:
    \displaystyle \lim_(x \to 5) (x^2 - 25)/(x + 5) = \lim_(x \to 5) ((x - 5)(x + 5))/(x + 5)
  2. Simplify:
    \displaystyle \lim_(x \to 5) (x^2 - 25)/(x + 5) = \lim_(x \to 5) x - 5
  3. Limit Rule [Variable Direct Substitution]:
    \displaystyle \lim_(x \to 5) (x^2 - 25)/(x + 5) = 5 - 5
  4. Simplify:
    \displaystyle \lim_(x \to 5) (x^2 - 25)/(x + 5) = 0

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Limits

User Martin Sustrik
by
4.7k points