Answer:
Explanation:
2/cos^2(theta) - sin^2(theta)/cos^(theta) = p
(2 - sin^2(theta) ) / cos^2(theta) = p
cos^2(theta) = 1 - sin^2(theta) Relationship between sines and cosines
2 - sin^2(theta)/ (1 - sin^2(theta) ) = p Everything is now in terms of sines
sin^2 (theta) = 1 / csc ^2 (theta) sin^(theta) = 1/csc(theta)
2 - 1/csc^2(theta) Make Left over csc(theta)
============== = p
1 - 1/csc^2(theta)
2 csc^2(theta) - 1
------------------------
csc^2(theta)
================ = p Cancel out denominators (csc^2(theta))
csc(theta) - 1
-------------------
csc^2(theta)
2 csc^2 (theta) - 1
=============== = p Multiply both sides by csc^2(theta) - 1
csc^2(theta) - 1
2csc^2(theta) - 1 = p*csc^2(theta) - p Collect csc^2(theta) on the left, p on the right.
csc^2(theta) (2 - p) = 1 - p
csc^2(theta) = (1 - p)/(2 - p)