233k views
5 votes
For the following right triangle, find the side length x . Round your answer to the nearest hundredth.

For the following right triangle, find the side length x . Round your answer to the-example-1

1 Answer

4 votes


\huge\bold{Given:}

Length of the base = 9

Length of the hypotenuse = 16
\huge\bold{To\:find:}

The length of the perpendicular ''
x".


\large\mathfrak{{\pmb{\underline{\orange{Solution}}{\orange{:}}}}}

The length of the perpendicular
x is
\boxed{±13.229}.


\large\mathfrak{{\pmb{\underline{\red{Step-by-step\:explanation}}{\orange{:}}}}}

Using Pythagoras theorem, we have


({perpendicular})^(2) + ({base})^(2) = ({hypotenuse})^(2) \\ ⇢ {x}^(2) + {(9})^(2) = ({16})^(2) \\ ⇢ {x}^(2) + 81 = 256 \\ ⇢ {x}^(2) = 256 - 81 \\ ⇢x = √(175) \\ ⇢x = ±13.229


\sf\blue{Therefore,\:the\:length\:of\:the\:perpendicular \:


\huge\bold{To\:verify :}


( {13.229})^(2) + ({9})^(2) = ({16})^(2) \\ ⇢ 175 + 81 = 256 \\ ⇢ 256 = 256 \\⇢  L.H.S.=R. H. S

Hence verified. ✔


\circ \: \: { \underline{ \boxed{ \sf{ \color{green}{Happy\:learning.}}}}}∘

For the following right triangle, find the side length x . Round your answer to the-example-1
User Nikkole
by
5.5k points