99.0k views
3 votes
Use the binomial expression (p+q)^n to calculate a binomial distribution with n=5 and p=0.3.(Show all steps)

User Ssm
by
5.7k points

1 Answer

6 votes

Answer:

The binomial in expanded form is
(0.3 + q)^(5) = (243)/(100000) + (81)/(2000)\cdot q + (27)/(100)\cdot q^(2) + (9)/(10) \cdot q^(3) + (3)/(2)\cdot q^(4) + q^(5).

Explanation:

The Binomial Theorem states that a binomial of the form
(a + b)^(n) can be expanded by using the following identity:


(a + b)^(n) = \Sigma \limits^(n)_(k = 0)\,(n!)/(k!\cdot (n-k)!)\cdot a^(n-k)\cdot b^(k) (1)

If we know that
a = p = 0.3 and
n = 5, then the expanded form of the binomial is:


(p+q)^(n) = (243)/(100000) + 5\cdot \left((81)/(10000) \right)\cdot q + 10\cdot \left((27)/(1000))\cdot q^(2) + 10\cdot \left((9)/(100) \right)\cdot q^(3) + 5\cdot \left((3)/(10) \right)\cdot q^(4) + q^(5)


(0.3 + q)^(5) = (243)/(100000) + (81)/(2000)\cdot q + (27)/(100)\cdot q^(2) + (9)/(10) \cdot q^(3) + (3)/(2)\cdot q^(4) + q^(5)

User Zmeda
by
5.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.