Answer:
B, D, and E.
Explanation:
We are given the graph:
![f(x)=(x+5)(x-3)](https://img.qammunity.org/2022/formulas/mathematics/college/syp4f5po15qakg620hazgoqypxq7uzp9gx.png)
We can expand the equation into standard form:
![f(x)=x^2+2x-15](https://img.qammunity.org/2022/formulas/mathematics/college/tm4pmacl5omwd7ub27tm7w6y1p5k2swn0e.png)
Since the leading coefficient is positive, our parabola curves up. Hence, it has a relative minimum.
The x-intercepts of a function is whenever y = 0. Hence:
![0=(x+5)(x-3)](https://img.qammunity.org/2022/formulas/mathematics/college/gcdq13dc5g0rrcumrkjffi8ptnogzl7r6d.png)
Zero Product Property:
![x+5=0\text{ or } x-3=0](https://img.qammunity.org/2022/formulas/mathematics/college/ja61my0bxt2v16ejx7qn86cz2ebcijb37g.png)
Solve:
![x=-5\text{ or } x=3](https://img.qammunity.org/2022/formulas/mathematics/college/ch3906g6hck4fht2gy5xamejeou7phq4h9.png)
So, our x-intercepts are (-5, 0) and (3, 0).
The y-intercept occurs when x = 0. Hence:
![f(0)=(0+5)(0-3)=-15](https://img.qammunity.org/2022/formulas/mathematics/college/7shzvbqa6d7888fra1a32jjhhhnp78ploe.png)
So the y-intercept is (0, -15).
The axis of symmetry is given by:
![\displaystyle x=-(b)/(2a)](https://img.qammunity.org/2022/formulas/mathematics/college/a07l8g9dgeg6py8dz66wvqfx3kv6kldr9s.png)
In this case, from standard form, a = 1, b = 2, and c = -15. Hence:
![\displaystyle x=-(2)/(2(1))=-1](https://img.qammunity.org/2022/formulas/mathematics/college/b40nv2rohjs6ly77xtcndfexpjxtcmtq7o.png)
Our axis of symmetry is -1.
Therefore, the correct statements are B, D, and E.