39.5k views
25 votes
a cylindrical-shaped water storage tank with diameter 60 ft and height 20 ft needs to be painted on the outside. if the tank is on the ground, find the surface area that needs painting

User Riqitang
by
6.5k points

1 Answer

7 votes

Answer:

6600ft.² is the correct answer.

Explanation:

Given that,

  • Diameter of the Cylindrical tank, d = 60 ft
  • Height of the Cylindrical tank, h = 20 ft
  • Radius of the Cylindrical tank, r = 30ft.


\:

To Find:

  • Area of the Cylindrical tank to be painted.


\:

Solution:

Area of Cylindrical tank to be painted = CSA of the Cylindrical tank + Area of the circle


\star \quad{ \boxed{ \green{CSA_((Cylinder)) = 2 \pi r h }}} \quad \star


\star \quad{ \boxed{ \green{Area_((Circle)) = \pi {r}^(2) }}} \quad \star


\longrightarrow \: 2\pi rh \: + \pi {r}^(2)


\longrightarrow \: \pi r(2h + r)


\longrightarrow \: (22)/(7) * 30 *(2*20+30)


\longrightarrow \: (660)/(7) * (40 + 30)


\longrightarrow \: (660)/(7) * 70


\longrightarrow \: 660 * 10


\longrightarrow \: 6600 {ft.}^(2)

Hence, Area of the Cylindrical tank to be painted is 6600ft.²

_____________________

Additional Information:


\footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{ \red{More \: Formulae}}} \\ \\ \bigstar \: \bf{CSA_((cylinder)) = 2\pi \: rh}\\ \\ \bigstar \: \bf{Volume_((cylinder)) = \pi {r}^(2) h}\\ \\ \bigstar \: \bf{TSA_((cylinder)) = 2\pi \: r(r + h)}\\ \\ \bigstar \: \bf{CSA_((cone)) = \pi \: r \: l}\\ \\ \bigstar \: \bf{TSA_((cone)) = \pi \: r \: (l + r)}\\ \\ \bigstar \: \bf{Volume_((sphere)) = (4)/(3)\pi {r}^(3) }\\ \\ \bigstar \: \bf{Volume_((cube)) = {(side)}^(3) }\\ \\ \bigstar \: \bf{CSA_((cube)) = 4 {(side)}^(2) }\\ \\ \bigstar \: \bf{TSA_((cube)) = 6 {(side)}^(2) }\\ \\ \bigstar \: \bf{Volume_((cuboid)) = lbh}\\ \\ \bigstar \: \bf{CSA_((cuboid)) = 2(l + b)h}\\ \\ \bigstar \: \bf{TSA_((cuboid)) = 2(lb +bh+hl )}\\ \: \end{array} }}

User Mcklayin
by
5.0k points