Answer:
6600ft.² is the correct answer.
Explanation:
Given that,
- Diameter of the Cylindrical tank, d = 60 ft
- Height of the Cylindrical tank, h = 20 ft
- Radius of the Cylindrical tank, r = 30ft.
![\:](https://img.qammunity.org/2023/formulas/mathematics/college/2ggh1nmemdo9eckwr4kv18nc6ebnpn2pop.png)
To Find:
- Area of the Cylindrical tank to be painted.
![\:](https://img.qammunity.org/2023/formulas/mathematics/college/2ggh1nmemdo9eckwr4kv18nc6ebnpn2pop.png)
Solution:
Area of Cylindrical tank to be painted = CSA of the Cylindrical tank + Area of the circle
![\star \quad{ \boxed{ \green{CSA_((Cylinder)) = 2 \pi r h }}} \quad \star](https://img.qammunity.org/2023/formulas/mathematics/college/wo2znexrinpulsij7fxt14vl2aosm8okjv.png)
![\star \quad{ \boxed{ \green{Area_((Circle)) = \pi {r}^(2) }}} \quad \star](https://img.qammunity.org/2023/formulas/mathematics/college/7eqxubecauw4xyjhk6f69ynpb1oes6nfna.png)
![\longrightarrow \: 2\pi rh \: + \pi {r}^(2)](https://img.qammunity.org/2023/formulas/mathematics/college/3oy6y0sx7r7egdtg854mlwq8rf27tgqx2k.png)
![\longrightarrow \: \pi r(2h + r)](https://img.qammunity.org/2023/formulas/mathematics/college/njaiwz384p4849or9zctda9cgbajehcrnd.png)
![\longrightarrow \: (22)/(7) * 30 *(2*20+30)](https://img.qammunity.org/2023/formulas/mathematics/college/scef4kfw0ngvi5ryndvidxzeyv827oz72w.png)
![\longrightarrow \: (660)/(7) * (40 + 30)](https://img.qammunity.org/2023/formulas/mathematics/college/7xtsp5jsemyj57fjvlfqack30k02z6sg9l.png)
![\longrightarrow \: (660)/(7) * 70](https://img.qammunity.org/2023/formulas/mathematics/college/nkcm7b6nml4vsa4kk6yae00vorc4z7iz2d.png)
![\longrightarrow \: 660 * 10](https://img.qammunity.org/2023/formulas/mathematics/college/iu6feyl5sz2ldvy8bfj7hq155huc7zcgab.png)
![\longrightarrow \: 6600 {ft.}^(2)](https://img.qammunity.org/2023/formulas/mathematics/college/3qgjf8mzqhldoul7s1sqalmfp8duxthqdi.png)
Hence, Area of the Cylindrical tank to be painted is 6600ft.²
_____________________
Additional Information:
![\footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{ \red{More \: Formulae}}} \\ \\ \bigstar \: \bf{CSA_((cylinder)) = 2\pi \: rh}\\ \\ \bigstar \: \bf{Volume_((cylinder)) = \pi {r}^(2) h}\\ \\ \bigstar \: \bf{TSA_((cylinder)) = 2\pi \: r(r + h)}\\ \\ \bigstar \: \bf{CSA_((cone)) = \pi \: r \: l}\\ \\ \bigstar \: \bf{TSA_((cone)) = \pi \: r \: (l + r)}\\ \\ \bigstar \: \bf{Volume_((sphere)) = (4)/(3)\pi {r}^(3) }\\ \\ \bigstar \: \bf{Volume_((cube)) = {(side)}^(3) }\\ \\ \bigstar \: \bf{CSA_((cube)) = 4 {(side)}^(2) }\\ \\ \bigstar \: \bf{TSA_((cube)) = 6 {(side)}^(2) }\\ \\ \bigstar \: \bf{Volume_((cuboid)) = lbh}\\ \\ \bigstar \: \bf{CSA_((cuboid)) = 2(l + b)h}\\ \\ \bigstar \: \bf{TSA_((cuboid)) = 2(lb +bh+hl )}\\ \: \end{array} }}](https://img.qammunity.org/2023/formulas/mathematics/college/9760c2lxqbsmt2kflgyxjm73da17uz4f8l.png)