24.1k views
5 votes
The maximum value of the function: f(x)= -5 x ^2 +30x-200 is?

1 Answer

5 votes

Answer:


\displaystyle - 155

Explanation:

we are given a quadratic function


\displaystyle f(x) = - 5 {x}^(2) + 30x - 200

we want to figure out the minimum value of the function

to do so we need to figure out the minimum value of x in the case we can consider the following formula:


\displaystyle x _( \rm min) = ( - b)/(2a)

the given function is in the standard form i.e


\displaystyle f(x) = a {x}^(2) + bx + c

so we acquire:

  • b=30
  • a=-5

thus substitute:


\displaystyle x _( \rm min) = ( - 30)/(2. - 5)

simplify multiplication:


\displaystyle x _( \rm min) = ( - 30)/( - 10)

simply division:


\displaystyle x _( \rm min) = 3

plug in the value of minimum x to the given function:


\displaystyle f (3)= - 5 {(3)}^(2) + 30.3 - 200

simplify square:


\displaystyle f (3)= - 5 {(9)}^{} + 30.3 - 200

simplify multiplication:


\displaystyle f (3)= - 45 + 90- 200

simplify:


\displaystyle f (3)= - 155

hence,

the minimum value of the function is -155

User Shawn Wildermuth
by
4.1k points