143k views
3 votes
Prove the following
\bold{algebraically}:


\displaystyle \frac{ {29}^(3) + {29}^(2) + 30 }{ {29}^(4) - 1} = (1)/(28)


2 Answers

3 votes

Answer:

Explanation:

Identity to use:

1+N+N^2+N^3 = (N^4-1)/(N-1)

Let N=29

1+29+29^2+29^3 = (29^4-1) / (29-1)

30+29^2+29^3 = (29^4-1) / 28

Transpose and re-arrange

(29^3+29^2+30) / (29^4-1) = 1 / 28 QED

User Mpora
by
4.8k points
4 votes

Answer:

see below

Explanation:

we are given


\displaystyle \frac{ {29}^(3) + {29}^(2) + 30 }{ {29}^(4) - 1} = (1)/(28)

we want to prove it algebraically

to do so rewrite 30:


\displaystyle \frac{ {29}^(3) + {29}^(2) + 29 + 1}{ {29}^(4) - 1} \stackrel{ ? }{= }(1)/(28)

let 29 be a thus substitute:


\displaystyle \frac{ {a}^(3) + {a}^(2) + a + 1}{ {a}^(4) - 1} \stackrel{ ? }{= }(1)/(28)

factor the denominator:


\rm\displaystyle \frac{ {a}^(3) + {a}^(2) + a + 1}{ ({a}^(2) + 1) (a- 1)(a + 1)} \stackrel{ ? }{= }(1)/(28)

Factor out a²:


\rm\displaystyle \frac{ {a}^(2) ({a}^{} + 1)+ a + 1}{ ({a}^(2) + 1) (a- 1)(a + 1)} \stackrel{ ? }{= }(1)/(28)

factor out 1:


\rm\displaystyle \frac{ {a}^(2) ({a}^{} + 1)+1( a + 1)}{ ({a}^(2) + 1) (a- 1)(a + 1)} \stackrel{ ? }{= }(1)/(28)

group:


\rm\displaystyle \frac{ ({a}^(2) +1)( a + 1)}{ ({a}^(2) + 1) (a + 1)(a - 1)} \stackrel{ ? }{= }(1)/(28)

reduce fraction:


\rm\displaystyle \frac{ \cancel{({a}^(2) +1)( a + 1)}}{ \cancel{({a}^(2) + 1) (a + 1)}(a - 1)} \stackrel{ ? }{= }(1)/(28)


\displaystyle (1)/(a - 1) \stackrel {?}{ = } (1)/(28)

substitute back:


\displaystyle (1)/(29 - 1) \stackrel {?}{ = } (1)/(28)

simplify substraction:


\displaystyle (1)/(28) \stackrel { \checkmark}{ = } (1)/(28)

hence Proven

User Autosvet
by
4.8k points