273,703 views
29 votes
29 votes
Find the value of X for the given parallelogram

Find the value of X for the given parallelogram-example-1
User Clifgriffin
by
3.2k points

2 Answers

22 votes
22 votes
Opposite angles in a parallelogram are congruent

So,


6x-10 = 2x + 50

Now solve like a normal equation

4x = 60
x = 15
User Dty
by
2.3k points
14 votes
14 votes

Answer:

  • 15


\:

Explanation:

Parallelogram is a quadrilateral whose both pairs of opposite sides are parallel and equal and opposite angles are also equal.


\:

So,


\\ { \longrightarrow \qquad{ \pmb{ \sf { \angle P = \angle R}}}} \: \: \\ \\


{ \longrightarrow \qquad{ \pmb{ \sf { 6x - 10 = 2x + 50}}}} \: \: \\ \\

Subtracting 2x from both sides we get :


\\ { \longrightarrow \qquad{ \pmb{ \sf { 6x - 10 - 2x = 2x + 50 - 2x}}}} \: \: \\ \\


{ \longrightarrow \qquad{ \pmb{ \sf { 4x - 10 = 50 }}}} \: \: \\ \\

Adding 10 to both sides we get :


\\ { \longrightarrow \qquad{ \pmb{ \sf { 4x - 10 + 10 = 50 + 10 }}}} \: \: \\ \\


{ \longrightarrow \qquad{ \pmb{ \sf { 4x = 60 }}}} \: \: \\ \\

Dividing 4 from both sides we get :


{ \longrightarrow \qquad{ \pmb{ \sf { (4x)/(4) = (60)/(4) }}}} \: \: \\ \\


{ \longrightarrow \qquad{ \pmb{ \frak { x = 15 }}}} \: \: \\ \\

Therefore,

  • The value of x is 15

User Tjmgis
by
3.2k points