Answer:
(c) 3360
Explanation:
Given
The above arithmetic series where:
--- first term
--- the common difference (18 - 12 = 6)
--- The last term
Required
The value of the series
First, we calculate n using:
![T_n = T_1 + (n - 1)d](https://img.qammunity.org/2022/formulas/mathematics/college/7qyzazx9m0pxrgwin36in9kfaapqk5cjdf.png)
This gives:
![198 = 12 + (n - 1)*6](https://img.qammunity.org/2022/formulas/mathematics/college/o99gzktvs16t1xe037ob2hh65wbewylgpa.png)
Collect like terms
![198 - 12 = (n - 1)*6](https://img.qammunity.org/2022/formulas/mathematics/college/h7nvqdifii98fqcfuf70xakkq6sjn4zd6x.png)
![186 = (n - 1)*6](https://img.qammunity.org/2022/formulas/mathematics/college/hs3qs331uyu78nvl9bdxxgfymmcwei5lxb.png)
Divide both sides by 6
![31 = (n - 1)](https://img.qammunity.org/2022/formulas/mathematics/college/3wz1cgasrntxc27s55jme18onvvg59x5qn.png)
Make n the subject
![n = 31 + 1](https://img.qammunity.org/2022/formulas/mathematics/college/vp9k8fdj08o6l97v8ax4k5kg9rpyabfnrt.png)
![n=32](https://img.qammunity.org/2022/formulas/mathematics/college/xsgjzrm63ewty253moxc6d9qa6gi9hb014.png)
The sum of the series is:
![S_n= (n)/(2)(T_1 + T_n)](https://img.qammunity.org/2022/formulas/mathematics/college/5tzhw7je57le1rfxnvkune39kurkq9a8hz.png)
So, we have:
![S_n= (32)/(2)(12 + 198)](https://img.qammunity.org/2022/formulas/mathematics/college/rc2i2z1gplzfmje62e6n4sh17ak7yf1rxd.png)
![S_n= (32)/(2)*210](https://img.qammunity.org/2022/formulas/mathematics/college/y4911cj7netwzmx1e29ls7bvzvjqcv2xko.png)
![S_n= 16*210](https://img.qammunity.org/2022/formulas/mathematics/college/mkbzxk3bx3gvl1zz8ip2gffawqd6storov.png)
![S_n= 3360](https://img.qammunity.org/2022/formulas/mathematics/college/r594p39pzdi5gjij0sk2wo8m8ax92ki8yz.png)