48.0k views
0 votes
Simplify the radical expression.

Simplify the radical expression.-example-1
User DaZza
by
3.5k points

2 Answers

7 votes

Answer:


xy^3\sqrt[4]{y^3}

Explanation:


\sqrt[4]{x^4y^(15)} =\sqrt[4]{x^4}*\sqrt[4]{y^(15)}\\\\=x\sqrt[4]{y^(15)}\\\\=x(\sqrt[4]{y^(12)} *\sqrt[4]{y^3})\\\\=xy^3\sqrt[4]{y^3}\\\\\\\sqrt[4]{y^(12)} =y^(12/4)=y^3 \\\\\sqrt[4]{x^4} =x^(4/4)=x

User Robin Cox
by
3.3k points
4 votes

Answer:


xy^3 \sqrt[4]{y^3}

Explanation:

Recall the exponent property
a^b+a^c=a^((b+c)).

We can use this property to break the problem down:


\sqrt[4]{x^4y^(15)}=\sqrt[4]{x\cdot x\cdot x\cdot x\cdot y^3\cdot y^3\cdot y^3\cdot y^3\cdot y^3}=\boxed{xy^3 \sqrt[4]{y^3}}

User Marko Ivkovic
by
3.6k points