63.3k views
24 votes
Solve the system y= 4x + 1 and 3x+2y =13

1 Answer

2 votes

Given :


{\qquad \sf \dashrightarrow y= 4x + 1 \: –––– \sf \: (i)}


{\qquad \sf \dashrightarrow 3x + 2y = 13 \: –––– \sf \: (ii)}

Now, Substituing the value of y in equation (ii) :


{\qquad \sf \dashrightarrow \: 3x + 2y = 13 }


{\qquad \sf \dashrightarrow \: 3x + 2(4x + 1) = 13 }


{\qquad \sf \dashrightarrow \: 3x + 8x + 2 = 13 }


{\qquad \sf \dashrightarrow \: 11x + 2 = 13 }


{\qquad \sf \dashrightarrow \: 11x = 13 - 2 }


{\qquad \sf \dashrightarrow \: 11x = 11 }


{\qquad \sf \dashrightarrow \: x = (11)/(11) }


{\qquad \sf \dashrightarrow \bf \: x = 1 }

Now, substituting the value of x in equation (i) :


{\qquad \sf \dashrightarrow y= 4x + 1}


{\qquad \sf \dashrightarrow y= 4(1) + 1}


{\qquad \sf \dashrightarrow y= 4 + 1}


{\qquad \bf \dashrightarrow y= 5}

User Yole
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories