Answer:
60 degrees
Explanation:
The sum of interior angles of a hexagon is 720 degrees, so:
![(180-m_1)+(180-m_2)+(180-m_3)+(180-m_4)+(180-m_5)+(180-m_6)=720](https://img.qammunity.org/2023/formulas/mathematics/high-school/ais8t75ouvn67nvsgouwu7cpmzech4fhjm.png)
We know that angle 6 is 90 degrees, so:
![(180-m_1)+(180-m_2)+(180-m_3)+(180-m_4)+(180-m_5)+90=720\\(180-m_1)+(180-m_2)+(180-m_3)+(180-m_4)+(180-m_5)=630\\900-m_1-m_2-m_3-m_4-m_5=630\\-m_1-m_2-m_3-m_4-m_5=-270\\m_1+m_2+m_3+m_4+m_5=270](https://img.qammunity.org/2023/formulas/mathematics/high-school/48m2bt5wy9t1uy1vml339klqxg56daclma.png)
We will rewrite the definition of angle 4:
![m_4=m_3+10\\m_4-10=m_3](https://img.qammunity.org/2023/formulas/mathematics/high-school/u0ravlrwywvh80vebzaj090zns7u6c00cl.png)
And we will start a substitution madness:
![m_1+m_2+m_3+m_4+m_5=270\\m_3+m_3+m_3+m_4+m_5=270\\(m_4-10)+(m_4-10)+(m_4-10)+m_4+m_5=270\\3m_4-30+m_4+m_5=270\\3m_5-30+m_5+m_5=270](https://img.qammunity.org/2023/formulas/mathematics/high-school/h5ntwv10nzq23ggata9gdneam7dvh1llp2.png)
For the sake of simplicity, we will replace angle 5 as x:
![3x-30+x+x=270\\5x-30=270\\5x=300\\x=60](https://img.qammunity.org/2023/formulas/mathematics/high-school/l21gm9ncai2r69b6mv6qwa7hga2bwoqicb.png)
And don't forget the degree sign!