Solution :
The probability of winning when you choose n is =
![$^nC_2\left((1)/(2)\right)^n$](https://img.qammunity.org/2022/formulas/mathematics/college/y408hdpqxu40m05edr8r1tqphsg1muihj0.png)
![$n\left((n-1)/(2)\right)* \left((1)/(2)\right)^n = n(n-1)\left((1)/(2)\right)^(n+1)$](https://img.qammunity.org/2022/formulas/mathematics/college/2vkhub2fy4pwyfq4lrtkovwxe9bp1yolq6.png)
Apply log on both the sides,
![$f(n) = \log\left((n)(n-1)\left((1)/(2)\right)^(n-1)\right) = \log n +\log (n-1)+(n+1) \ \log\left((1)/(2)\right)$](https://img.qammunity.org/2022/formulas/mathematics/college/n539bnf410rgnix01pr5jsxlexb7cvk8x8.png)
Differentiation, f(x) is
![$f'=(1)/(x)+(1)/((x-1))+\log\left((1)/(2)\right)$](https://img.qammunity.org/2022/formulas/mathematics/college/j7o2d4667iujg4fcy0rchfv9o3jy87fjkk.png)
Let us find x for which f' is positive and x for which f' is negative.
, since
![$\log(1/2) = 0.693147$](https://img.qammunity.org/2022/formulas/mathematics/college/8oppl454s68qgzbn724wkilce4q88t6h69.png)
For x ≤ 3, f' > 0 for
![$(1)/(x)+(1)/(x-1)+\log\left((1)/(2)\right)>0$](https://img.qammunity.org/2022/formulas/mathematics/college/lp3rq5yy3vep4aqp7fqyiq92c061ctmpdy.png)
![$(1)/(x)+(1)/(x-1)-0.6931470$](https://img.qammunity.org/2022/formulas/mathematics/college/4sqt189atldj8n7e7s45cxrzabydv7yxla.png)
That means f(x) is increasing function for n ≤ 3
for x > 4
f' < 0 for n ≥ 4, that means f(n) is decreasing function for n ≥ 4.
Probability of winning when you chose n = 3 is
![$3(3-1)\left((1)/(2)\right)^(3+1)=0.375$](https://img.qammunity.org/2022/formulas/mathematics/college/tpws3wv3j6hq8jl1azx1bq1k4vjrc2cu36.png)
Probability of winning when you chose n = 4 is
![$4(4-1)\left((1)/(2)\right)^(4+1)=0.375$](https://img.qammunity.org/2022/formulas/mathematics/college/2wn3ovy97ukzo8hrlnms2t2kq0ig8i7esa.png)
Therefore, we should chose either 3 or 4 to maximize chances of winning.
The probability of winning with an optimal choice is n = 0.375