Answers:
- cos(2theta) = -119/169
- cos(theta) = -5/13
=====================================================
The given info is:
- sin(theta) = 12/13
- theta is in quadrant II
From that, we can use the pythagorean trig identity to find that cos(theta) = -5/13. Keep in mind that cosine is negative in quadrant II.
Now use the trig identity below to compute cos(2theta)
![\cos(2\theta) = \cos^2(\theta)-\sin^2(\theta)\\\\\cos(2\theta) = \left((-5)/(13)\right)^2-\left((12)/(13)\right)^2\\\\\cos(2\theta) = (25)/(169)-(144)/(169)\\\\\cos(2\theta) = (25-144)/(169)\\\\\cos(2\theta) = -(119)/(169)\\\\](https://img.qammunity.org/2022/formulas/mathematics/college/2uh9nvgtvh2419en8a2wbf6jbcnua4h0v0.png)
Other options you could use are these identities
![\cos(2\theta) = 2\cos^2(\theta)-1\\\\](https://img.qammunity.org/2022/formulas/mathematics/college/d7crzjpuo4fvv1stub9yfnmn7zkjk2omkd.png)
or
![\cos(2\theta) = 1-2\sin^2(\theta)\\\\](https://img.qammunity.org/2022/formulas/mathematics/college/cjprml04fc7rb54n8aj5kmvz9vp0vd63f0.png)