Answer:
![(a)\ f(8) = 200(1 + 3.1\%)^8](https://img.qammunity.org/2022/formulas/mathematics/high-school/2dhfogp8fv3jgln5pxxk1y3yf1qwtd6p9v.png)
(b) After 8 years, the savings account has $255.32
Explanation:
Given
---- initial (i.e. when t = 0)
![r =3.1\%](https://img.qammunity.org/2022/formulas/mathematics/high-school/j1oubgyydvwq9jjb7tiojj8n4j1ryw4dvq.png)
![t = 8](https://img.qammunity.org/2022/formulas/geography/high-school/ypprk618727jnkzfczi9jkhiy4e5sqiaq6.png)
Solving (a): Model the situation
For growth, an exponential function is represented as:
![f(t) = a(1 + r)^t](https://img.qammunity.org/2022/formulas/mathematics/high-school/s3wrh7t6d1yjmx71w0h3dzaotawv6nbgfl.png)
This gives:
![f(8) = 200(1 + 3.1\%)^8](https://img.qammunity.org/2022/formulas/mathematics/high-school/kb30ger8q6n0g9fjffli3hxyv83e0levvk.png)
Solving (b): The solution to (a)
We have:
![f(8) = 200(1 + 3.1\%)^8](https://img.qammunity.org/2022/formulas/mathematics/high-school/kb30ger8q6n0g9fjffli3hxyv83e0levvk.png)
Express percentage as decimal
![f(8) = 200(1 + 0.031)^8](https://img.qammunity.org/2022/formulas/mathematics/high-school/ikho579kjurm34leffyn1mybgs5i4ph0qa.png)
![f(8) = 200(1.031)^8](https://img.qammunity.org/2022/formulas/mathematics/high-school/gw4a19hs1cvpqb9kt0te9iu66vtgl788an.png)
![f(8) = 200*1.2766](https://img.qammunity.org/2022/formulas/mathematics/high-school/cf7vwmi644dulh0mn8u49b12tj5185wptr.png)