85.0k views
2 votes
Find the exact value, without a

calculator.
710
6
sin
2
tan
12
6
2
7Tt/6
COS

Find the exact value, without a calculator. 710 6 sin 2 tan 12 6 2 7Tt/6 COS-example-1
User Swan
by
2.9k points

1 Answer

2 votes

Answer:


-2 -√(3)

Explanation:

First consider numerator


sin ((7\pi)/(6))/(2) = sin (7\pi)/(12)= sin ((\pi)/(4) + (\pi)/(3))

Using the formula : sin (A + B) = sin A cos B + cos A sin B


sin (\pi)/(4) = (√(2) )/(2), \ cos (\pi)/(4) = (√(2) )/(2)\\\\sin (\pi)/(3) = (√(2) )/(2), \ cos (\pi)/(3) = (1)/(2)


sin((\pi)/(4) + (\pi)/(3)) = sin (\pi)/(4) \cdot cos (\pi)/(3) + cos (\pi)/(4) \cdot sin (\pi)/(3)


=(√(2) )/(2) \cdot (1)/(2) + (√(2) )/(2) \cdot (√(3) )/(2) \\\\= (√(2) )/(4) + (√(6) )/(4)\\\\=(√(2) +√(6) )/(4)

Second consider denominator


cos ((7\pi)/(6))/(2) = cos (7\pi)/(12)= cos ((\pi)/(4) + (\pi)/(3))

Using the formula : cos (A + B) = cos A cos B - sin A sin B


sin (\pi)/(4) = (√(2) )/(2), \ cos (\pi)/(4) = (√(2) )/(2)\\\\sin (\pi)/(3) = (√(2) )/(2), \ cos (\pi)/(3) = (1)/(2)


cos((\pi)/(4) + (\pi)/(3)) = cos (\pi)/(4) \cdot cos (\pi)/(3) -sin (\pi)/(4) \cdot sin (\pi)/(3)


=(√(2) )/(2) \cdot (1)/(2) - (√(2) )/(2) \cdot (√(3) )/(2)\\\\=(√(2))/(4) - (√(6))/(4)\\\\= (√(2) -√(6) )/(4)

Therefore,


tan (7\pi)/(12) = (sin (7\pi)/(12))/(cos(7\pi)/(12))


= \frac{(√(2) +√(6) )/(4)} {(√(2) -√(6) )/(4) }\\\\=(√(2) +√(6) )/(4) * (4 )/(√(2) -√(6))\\\\=(√(2) +√(6) )/(√(2) -√(6))

Either we can stop here or Rationalize the denominator:


(√(2) +√(6) )/(√(2) -√(6)) * (√(2) +√(6) )/(√(2) +√(6)) = ((√(2) +√(6))^(2) )/((√(2))^2 -(√(6))^2) = (2 + 6 +2√(12) )/(2-6) = (8+2√(12) )/(-4) = (8+ 4√(3) )/(-4) = -2-√(3)

User JustGage
by
3.6k points