Answer:
CI 99% = ( - 0.0009 ; 0.0541 )
Explanation:
Sample 1 New Yorkers
sample size n₁ = 558
x₁ = 193
p₁ = x₁/n₁ = 193/ 558 p₁ = 0.3458 q₁ = 1 - p₁ q₁ = 1 - 0.3458
q₁ = 0.6542
Sample 2 Californians
sample size n₂ = 614
x₂ = 196
p₂ = x₂/n₂ = 196 / 614 p₂ = 0.3192 q₂ = 1 - p₂ q₂ = 1 - 0.3192
q₂ = 0.6808
CI 99 % means significance level α = 1 αα% α = 0.01
α/2 = 0.005
In z-table we look for z score for 0.005 z (c) = 2.57
CI 99 % = [ ( p₁ - p₂ ) ± z(c) * √( p₁*q₁)/n₁ + ( p₂*q₂)/n₂
p₁ - p₂ = ( 0.3458 - 0.3192 ) = 0.0266
√( p₁*q₁)/n₁ + ( p₂*q₂)/n₂ =√ 0.3458*0.6542)/558 + 0.3192*0.6808)/614
√( p₁*q₁)/n₁ + ( p₂*q₂)/n₂ = √ 4.05*10⁻⁴ + 3.54 * 10⁻⁴
√( p₁*q₁)/n₁ + ( p₂*q₂)/n₂ = 10⁻² * √7.59 = 10⁻² * 2.75
Then:
CI 99 % = 0.0266 ± 2.75 * 10⁻²
CI 99% = 0.0266 ± 0.0275
CI 99% = ( - 0.0009 ; 0.0541 )