125k views
1 vote
If the integral of the product of x squared and e raised to the negative 4 times x power, dx equals the product of negative 1 over 64 times e raised to the negative 4 times x power and the quantity A times x squared plus B times x plus E, plus C , then the value of A B E is

User Mmjmanders
by
6.9k points

1 Answer

5 votes

Answer:


A + B + E = 32

Explanation:

Given


\int\limits {x^2\cdot e^(-4x)} \, dx = -(1)/(64)e^(-4x)[Ax^2 + Bx + E]C

Required

Find
A +B + E

We have:


\int\limits {x^2\cdot e^(-4x)} \, dx = -(1)/(64)e^(-4x)[Ax^2 + Bx + E]C

Using integration by parts


\int {u} \, dv = uv - \int vdu

Where


u = x^2 and
dv = e^(-4x)dx

Solve for du (differentiate u)


du = 2x\ dx

Solve for v (integrate dv)


v = -(1)/(4)e^(-4x)

So, we have:


\int {u} \, dv = uv - \int vdu


\int\limits {x^2\cdot e^(-4x)} \, dx = x^2 *-(1)/(4)e^(-4x) - \int -(1)/(4)e^(-4x) 2xdx


\int\limits {x^2\cdot e^(-4x)} \, dx = -(x^2)/(4)e^(-4x) - \int -(1)/(2)e^(-4x) xdx


\int\limits {x^2\cdot e^(-4x)} \, dx = -(x^2)/(4)e^(-4x) +(1)/(2) \int xe^(-4x) dx

-----------------------------------------------------------------------

Solving


\int xe^(-4x) dx

Integration by parts


u = x ----
du = dx


dv = e^(-4x)dx ----------
v = -(1)/(4)e^(-4x)

So:


\int xe^(-4x) dx = -(x)/(4)e^(-4x) - \int -(1)/(4)e^(-4x)\ dx


\int xe^(-4x) dx = -(x)/(4)e^(-4x) + \int e^(-4x)\ dx


\int xe^(-4x) dx = -(x)/(4)e^(-4x) -(1)/(4)e^(-4x)

So, we have:


\int\limits {x^2\cdot e^(-4x)} \, dx = -(x^2)/(4)e^(-4x) +(1)/(2) \int xe^(-4x) dx


\int\limits {x^2\cdot e^(-4x)} \, dx = -(x^2)/(4)e^(-4x) +(1)/(2) [ -(x)/(4)e^(-4x) -(1)/(4)e^(-4x)]

Open bracket


\int\limits {x^2\cdot e^(-4x)} \, dx = -(x^2)/(4)e^(-4x) -(x)/(8)e^(-4x) -(1)/(8)e^(-4x)

Factor out
e^(-4x)


\int\limits {x^2\cdot e^(-4x)} \, dx = [-(x^2)/(4) -(x)/(8) -(1)/(8)]e^(-4x)

Rewrite as:


\int\limits {x^2\cdot e^(-4x)} \, dx = [-(1)/(4)x^2 -(1)/(8)x -(1)/(8)]e^(-4x)

Recall that:


\int\limits {x^2\cdot e^(-4x)} \, dx = -(1)/(64)e^(-4x)[Ax^2 + Bx + E]C


\int\limits {x^2\cdot e^(-4x)} \, dx = [-(1)/(64)Ax^2 -(1)/(64) Bx -(1)/(64) E]Ce^(-4x)

By comparison:


-(1)/(4)x^2 = -(1)/(64)Ax^2


-(1)/(8)x = -(1)/(64)Bx


-(1)/(8) = -(1)/(64)E

Solve A, B and C


-(1)/(4)x^2 = -(1)/(64)Ax^2

Divide by
-x^2


(1)/(4) = (1)/(64)A

Multiply by 64


64 * (1)/(4) = A


A =16


-(1)/(8)x = -(1)/(64)Bx

Divide by
-x


(1)/(8) = (1)/(64)B

Multiply by 64


64 * (1)/(8) = (1)/(64)B*64


B = 8


-(1)/(8) = -(1)/(64)E

Multiply by -64


-64 * -(1)/(8) = -(1)/(64)E * -64


E = 8

So:


A + B + E = 16 +8+8


A + B + E = 32

User Uzo
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories