125k views
1 vote
If the integral of the product of x squared and e raised to the negative 4 times x power, dx equals the product of negative 1 over 64 times e raised to the negative 4 times x power and the quantity A times x squared plus B times x plus E, plus C , then the value of A B E is

User Mmjmanders
by
2.7k points

1 Answer

5 votes

Answer:


A + B + E = 32

Explanation:

Given


\int\limits {x^2\cdot e^(-4x)} \, dx = -(1)/(64)e^(-4x)[Ax^2 + Bx + E]C

Required

Find
A +B + E

We have:


\int\limits {x^2\cdot e^(-4x)} \, dx = -(1)/(64)e^(-4x)[Ax^2 + Bx + E]C

Using integration by parts


\int {u} \, dv = uv - \int vdu

Where


u = x^2 and
dv = e^(-4x)dx

Solve for du (differentiate u)


du = 2x\ dx

Solve for v (integrate dv)


v = -(1)/(4)e^(-4x)

So, we have:


\int {u} \, dv = uv - \int vdu


\int\limits {x^2\cdot e^(-4x)} \, dx = x^2 *-(1)/(4)e^(-4x) - \int -(1)/(4)e^(-4x) 2xdx


\int\limits {x^2\cdot e^(-4x)} \, dx = -(x^2)/(4)e^(-4x) - \int -(1)/(2)e^(-4x) xdx


\int\limits {x^2\cdot e^(-4x)} \, dx = -(x^2)/(4)e^(-4x) +(1)/(2) \int xe^(-4x) dx

-----------------------------------------------------------------------

Solving


\int xe^(-4x) dx

Integration by parts


u = x ----
du = dx


dv = e^(-4x)dx ----------
v = -(1)/(4)e^(-4x)

So:


\int xe^(-4x) dx = -(x)/(4)e^(-4x) - \int -(1)/(4)e^(-4x)\ dx


\int xe^(-4x) dx = -(x)/(4)e^(-4x) + \int e^(-4x)\ dx


\int xe^(-4x) dx = -(x)/(4)e^(-4x) -(1)/(4)e^(-4x)

So, we have:


\int\limits {x^2\cdot e^(-4x)} \, dx = -(x^2)/(4)e^(-4x) +(1)/(2) \int xe^(-4x) dx


\int\limits {x^2\cdot e^(-4x)} \, dx = -(x^2)/(4)e^(-4x) +(1)/(2) [ -(x)/(4)e^(-4x) -(1)/(4)e^(-4x)]

Open bracket


\int\limits {x^2\cdot e^(-4x)} \, dx = -(x^2)/(4)e^(-4x) -(x)/(8)e^(-4x) -(1)/(8)e^(-4x)

Factor out
e^(-4x)


\int\limits {x^2\cdot e^(-4x)} \, dx = [-(x^2)/(4) -(x)/(8) -(1)/(8)]e^(-4x)

Rewrite as:


\int\limits {x^2\cdot e^(-4x)} \, dx = [-(1)/(4)x^2 -(1)/(8)x -(1)/(8)]e^(-4x)

Recall that:


\int\limits {x^2\cdot e^(-4x)} \, dx = -(1)/(64)e^(-4x)[Ax^2 + Bx + E]C


\int\limits {x^2\cdot e^(-4x)} \, dx = [-(1)/(64)Ax^2 -(1)/(64) Bx -(1)/(64) E]Ce^(-4x)

By comparison:


-(1)/(4)x^2 = -(1)/(64)Ax^2


-(1)/(8)x = -(1)/(64)Bx


-(1)/(8) = -(1)/(64)E

Solve A, B and C


-(1)/(4)x^2 = -(1)/(64)Ax^2

Divide by
-x^2


(1)/(4) = (1)/(64)A

Multiply by 64


64 * (1)/(4) = A


A =16


-(1)/(8)x = -(1)/(64)Bx

Divide by
-x


(1)/(8) = (1)/(64)B

Multiply by 64


64 * (1)/(8) = (1)/(64)B*64


B = 8


-(1)/(8) = -(1)/(64)E

Multiply by -64


-64 * -(1)/(8) = -(1)/(64)E * -64


E = 8

So:


A + B + E = 16 +8+8


A + B + E = 32

User Uzo
by
3.4k points