Answer:
![\displaystyle \lim_(x \to -8) f(x) = 1](https://img.qammunity.org/2022/formulas/mathematics/high-school/r743n88dmrxhdcrshtun6q61dwcd18xh71.png)
General Formulas and Concepts:
Calculus
Limits
Limit Rule [Constant]:
![\displaystyle \lim_(x \to c) b = b](https://img.qammunity.org/2022/formulas/mathematics/high-school/tt53d417e0exrtwn1fkrli3ujg0to07ln6.png)
Limit Rule [Variable Direct Substitution]:
![\displaystyle \lim_(x \to c) x = c](https://img.qammunity.org/2022/formulas/engineering/college/w51ix7fe7u1hi8clvsvlv9mb2bo57ewkjo.png)
Limit Property [Addition/Subtraction]:
![\displaystyle \lim_(x \to c) [f(x) \pm g(x)] = \lim_(x \to c) f(x) \pm \lim_(x \to c) g(x)](https://img.qammunity.org/2022/formulas/mathematics/high-school/52uan9wx0uhx7x3199mt7w68wt6nqh9a1o.png)
Explanation:
*Note:
When you graph the function, the left-hand and right-hand limit does equal the same.
Step 1: Define
![\displaystyle f(x) = \left \{ {{x + 9, x < -8} \atop {-7 - x, x \geq -8}} \right.](https://img.qammunity.org/2022/formulas/mathematics/high-school/4k94y85skv4gli1perx41mv09sufziroig.png)
Step 2: Find Limit
- Substitute in function [Limit]:
![\displaystyle \lim_(x \to -8) f(x) = \lim_(x \to -8) (-7 - x)](https://img.qammunity.org/2022/formulas/mathematics/high-school/n26a76ixjgjj14tqxgooppi1cl4tfxotgy.png)
- Evaluate limit [Limit Rule - Variable Direct Substitution]:
![\displaystyle \lim_(x \to -8) f(x) = -7 - (-8)](https://img.qammunity.org/2022/formulas/mathematics/high-school/iscpoz2dnmxkw45vf9ae424fwion7fx3mi.png)
- Simplify:
![\displaystyle \lim_(x \to -8) f(x) = 1](https://img.qammunity.org/2022/formulas/mathematics/high-school/r743n88dmrxhdcrshtun6q61dwcd18xh71.png)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Limits