232k views
5 votes
Find the sum sn of the arithmetic sequence a7=14/3 d=-4/3 n=15

User BlueYoshi
by
5.5k points

1 Answer

1 vote

Answer:


S_(15)= 50

Explanation:

Given


a_7 = (14)/(3)


d = -(4)/(3)


n = 15

Required

The sum of n terms

First, we calculate the first term using:


a_n = a + (n - 1)d

Let
n = 7

So, we have:


a_7 = a + (7 - 1)d


a_7 = a + 6d

Substitute
a_7 = (14)/(3) and
d = -(4)/(3)


(14)/(3) = a + 6*(-4)/(3)


(14)/(3) = a -8

Collect like terms


a =(14)/(3) +8

Take LCM and solve


a =(14+24)/(3)


a =(38)/(3)

The sum of n terms is then calculated as:


S_n = (n)/(2)(2a + (n - 1)d)

Where:
n = 15

So, we have:


S_n = (15)/(2)(2*(38)/(3) + (15 - 1)*(-4)/(3))


S_n = (15)/(2)(2*(38)/(3) + 14 *(-4)/(3))


S_n = (15)/(2)(2*(38)/(3) - 14 *(4)/(3))


S_n = (15)/(2)((2*38)/(3) - (14 *4)/(3))

Take LCM


S_n = (15)/(2)((2*38-14 *4)/(3))


S_n = (15)/(2)((20)/(3))

Open bracket


S_n = (15*20)/(2*3)


S_n = (300)/(6)


S_n = 50

Hence,


S_(15)= 50

User ColinM
by
5.4k points