Answer:
The half-life for the zombie population is of 8 years.
Explanation:
Exponential equation:
An exponential equation has the following format:
![N(t) = N(0)(1-r)^t](https://img.qammunity.org/2022/formulas/mathematics/college/x6xzjull6uqi9im6r853vwz5wah6q5ix28.png)
In which N(0) is the initial value and the part
is related to the decay.
In this question:
![N(t) = 300(0.5)^{(t)/(8)}](https://img.qammunity.org/2022/formulas/mathematics/college/6tkkpxuxp1uty0c6lhriwijrjo40mqvehw.png)
Thus N(0) = 300, that is, initial population of 300.
What is the half-life for the zombie population?
This is t for which N(t) = 0.5*300 = 150. So
![N(t) = 300(0.5)^{(t)/(8)}](https://img.qammunity.org/2022/formulas/mathematics/college/6tkkpxuxp1uty0c6lhriwijrjo40mqvehw.png)
![150 = 300(0.5)^{(t)/(8)}](https://img.qammunity.org/2022/formulas/mathematics/college/4kkjjh684mo57ppfq2pw88qt8tulm3ljl6.png)
![(0.5)^{(t)/(8)} = (150)/(300)](https://img.qammunity.org/2022/formulas/mathematics/college/tnk69z7bmxytsvpefyogk40a6uw4a14exk.png)
![(0.5)^{(t)/(8)} = 0.5](https://img.qammunity.org/2022/formulas/mathematics/college/t7sj0vbzjaqdxkdcl4ybr5gbb4xnr93n4q.png)
![(0.5)^{(t)/(8)} = (0.5)^1](https://img.qammunity.org/2022/formulas/mathematics/college/ngbu4gccp9pids0asbnok8j3hom0aguk00.png)
Equal exponents, so:
![(t)/(8) = 1](https://img.qammunity.org/2022/formulas/mathematics/college/tyo1waz5az65rtkufmibk4zpovel9vmer9.png)
![t = 8](https://img.qammunity.org/2022/formulas/geography/high-school/ypprk618727jnkzfczi9jkhiy4e5sqiaq6.png)
The half-life for the zombie population is of 8 years.