Explanation:
(B) L = 182.9 cm +- 0.1 cm
W = 152.4 cm +- 0.1 cm
(C)
Smallest dimensions possible:
L = 182.9 cm - 0.1 cm = 182.8 cm
W = 152.4 cm - 0.1 cm = 152.3 cm
A = (182.9 cm)(152.3 cm)
= 27840.44 cm^2
To find the uncertainty for the area ∆A, we use the formula
![(da)/(a) = (dl)/(l) + (dw)/(w)](https://img.qammunity.org/2022/formulas/mathematics/high-school/zsvmt6dmq6guk0ir1qmimywca4ibgdvgml.png)
where da = ∆A, dl = ∆L, dw = ∆W
![\frac{da}{27840.44 {cm}^(2) } = (0.1cm)/(182.8cm) + (0.1cm)/(152.3cm)](https://img.qammunity.org/2022/formulas/mathematics/high-school/byw6wemekohczyiu6ptuwrdffwffcj2br9.png)
![= 0.000547 + 0.000657](https://img.qammunity.org/2022/formulas/mathematics/high-school/s9nh3j6mz4qwzjkj6zbj2k3ypjf03av6qn.png)
![= 0.001204](https://img.qammunity.org/2022/formulas/mathematics/high-school/jqwazli3e4tx12o7uqgsekflf64tpm60nx.png)
Therefore
∆A = 0.001204 × 27840.44 cm^2
= 33.52 cm^2
Rounding off the numbers to their significant figures,
A = 27840 cm^2 +- 33 cm^2
(D)
For the largest possible area,
L = 183.0 cm
W = 152.5 cm
A = 27905.5 cn^2
![\frac{da}{27907.5 {cm}^(2) } = (0.1cm)/(183.0cm) + (0.1cm)/(152.5cm)](https://img.qammunity.org/2022/formulas/mathematics/high-school/4voabzbiww3juthevnaiim702zvtvh9wqs.png)
![= 0.001202](https://img.qammunity.org/2022/formulas/mathematics/high-school/u6ioioqbsmcybol6kdoqe3fue94htiu15d.png)
∆A = 0.001202 × 27907.5 cm^2
= 33.55 cm^2
Therefore, the largest possible area is
A = 27910 cm^2 +- 33 cm^2