41.3k views
2 votes
The
exact solusion of the IVP

The exact solusion of the IVP-example-1
User Marceau
by
4.1k points

1 Answer

7 votes

Answer:


\displaystyle y = √(2)e^2 + x^2

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

Algebra I

  • |Absolute Value|
  • Functions
  • Function Notation
  • Exponential Rule [Multiplying]:
    \displaystyle b^m \cdot b^n = b^(m + n)

Algebra II

  • Logarithms and Natural Logs
  • Euler's number e

Calculus

Derivatives

Derivative Notation

Derivative of a constant is 0

Differential Equations

  • Separation of Variables

Antiderivatives - Integrals

Integration Constant C

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Logarithmic Integration

Explanation:

Step 1: Define

Identify


\displaystyle y' = (xy)/(2 + x^2)


\displaystyle y(0) = 2

Step 2: Rewrite

Separation of Variables

  1. Rewrite Derivative Notation:
    \displaystyle (dy)/(dx) = (xy)/(2 + x^2)
  2. [Division Property of Equality] Isolate y's:
    \displaystyle (1)/(y) (dy)/(dx) = (x)/(2 + x^2)
  3. [Multiplication Property of Equality] Rewrite Derivative Notation:
    \displaystyle (1)/(y) dy = (x)/(2 + x^2) dx

Step 3: Find General Solution Pt. 1

Integration

  1. [Equality Property] Integrate both sides:
    \displaystyle \int {(1)/(y)} \, dy = \int {(x)/(2 + x^2)} \, dx
  2. [1st Integral] Integrate [Logarithmic Integration]:
    \displaystyle ln|y| = \int {(x)/(2 + x^2)} \, dx

Step 4: Identify Variables

Identify variables for u-substitution for 2nd integral.

u = 2 + x²

du = 2xdx

Step 5: Find General Solution Pt. 2

  1. [2nd Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle ln|y| = (1)/(2)\int {(2x)/(2 + x^2)} \, dx
  2. [2nd Integral] U-Substitution:
    \displaystyle ln|y| = (1)/(2)\int {(1)/(u)} \, du
  3. [2nd Integral] Integrate [Logarithmic Integration]:
    \displaystyle ln|y| = (1)/(2) ln|u| + C
  4. [Equality Property] e both sides:
    \displaystyle e^(ln|y|) = e^u
  5. Simplify:
    \displaystyle |y| = e^u
  6. Rewrite [Exponential Rule - Multiplying]:
    \displaystyle |y| = e^u \cdot e^C
  7. Simplify:
    \displaystyle |y| = Ce^u
  8. Back-Substitute:
    \displaystyle |y| = Ce^(1)/(2) ln

Our general solution is
\displaystyle |y| = Ce^(1)/(2) ln.

Step 6: Find Particular Solution

  1. Substitute in point:
    \displaystyle |2| = Ce^(1)/(2) ln
  2. Evaluate |Absolute Value|:
    \displaystyle 2 = Ce^2 + 0^2
  3. |Absolute Value| Evaluate exponents:
    \displaystyle 2 = Ce^2 + 0
  4. |Absolute Value| Add:
    \displaystyle 2 = Ce^(1)/(2) ln
  5. |Absolute Value| Evaluate:
    \displaystyle 2 = Ce^{(1)/(2) ln(2)}
  6. [Division Property of Equality] Isolate C:
    \displaystyle √(2) = C
  7. Rewrite:
    \displaystyle C = √(2)
  8. Substitute in C [General Solution]:
    \displaystyle y = √(2)e^2 + x^2

∴ Our particular solution is
\displaystyle y = √(2)e^(1)/(2) ln.

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Differential Equations

Book: College Calculus 10e

User VikasGoyal
by
4.3k points