Answer: 14
Explanation:
The mean absolute deviation of a dataset is defined as the average distance between each datav alue and the mean.
It is computed by formula:
![(1)/(n)\sum^n_(i=1)|x_i-\overline{x}|](https://img.qammunity.org/2022/formulas/mathematics/high-school/vdlems45wradeqt8kczycz20nsfe12oww3.png)
average value of the data set
n = number of data values
= data values in the set
![\overline{x}=(21.3+11.5+51.6+35+18.8+49)/(6)\\\\=31.2](https://img.qammunity.org/2022/formulas/mathematics/high-school/hvdunu3xn5prmsqn9zra5ia1t8p5natqn8.png)
MAD=
![(|21.3-31.2|+|11.5-31.2|+|51.6-31.2|+|35-31.2|+|18.8-31.2|+|49-31.2|)/(6)](https://img.qammunity.org/2022/formulas/mathematics/high-school/dr5s0lqj44ybvub4cl9bo0jtc7lriokv0i.png)
=
![(9.9+19.7+20.4+3.8+12.4+17.8)/(6)](https://img.qammunity.org/2022/formulas/mathematics/high-school/zu64xngt3fwf6yckptdnt388xgsqv9q34p.png)
=14
Hence, the mean absolute deviation of the set of data = 14