104k views
2 votes
Given two points P(sinθ+2, tanθ-2) and Q(4sin²θ+4sinθcosθ+2acosθ, 3sinθ-2cosθ+a). Find constant "a" and the corresponding value of θ when these two points coincide. (0 ≤ θ < 2π)

Show your work, thanks!​

User Pberggreen
by
4.7k points

1 Answer

1 vote

Answer:


\rm\displaystyle \displaystyle \displaystyle θ= {60}^( \circ) , {300}^( \circ)


\rm \displaystyle a = - ( √(3) )/(2) - 1, (√(3))/(2) - 1

Explanation:

we are given two coincident points


\displaystyle P( \sin(θ)+2, \tan(θ)-2) \: \text{and } \\ \displaystyle Q(4 \sin ^(2) (θ)+4 \sin(θ) \cos(θ)+2a \cos(θ), 3 \sin(θ)-2 \cos(θ)+a)

since they are coincident points


\rm \displaystyle P( \sin(θ)+2, \tan(θ)-2) = \displaystyle Q(4 \sin ^(2) (θ)+4 \sin(θ )\cos(θ)+2a \cos(θ), 3 \sin(θ)-2 \cos(θ)+a)

By order pair we obtain:


\begin{cases} \rm\displaystyle \displaystyle 4 \sin ^(2) (θ)+4 \sin(θ) \cos(θ)+2a \cos(θ) = \sin( \theta) + 2 \\ \\ \displaystyle 3 \sin( \theta) - 2 \cos( \theta) + a = \tan( \theta) - 2\end{cases}

now we end up with a simultaneous equation as we have two variables

to figure out the simultaneous equation we can consider using substitution method

to do so, make a the subject of the equation.therefore from the second equation we acquire:


\begin{cases} \rm\displaystyle \displaystyle 4 \sin ^(2) (θ)+4 \sinθ \cos(θ)+2a \cos(θ )= \sin( \theta) + 2 \\ \\ \boxed{\displaystyle a = \tan( \theta) - 2 - 3 \sin( \theta) + 2 \cos( \theta) } \end{cases}

now substitute:


\rm\displaystyle \displaystyle 4 \sin ^(2) (θ)+4 \sin(θ) \cos(θ)+2 \cos(θ) \{\tan( \theta) - 2 - 3 \sin( \theta) + 2 \cos( \theta) \}= \sin( \theta) + 2

distribute:


\rm\displaystyle \displaystyle 4 \sin ^(2)( θ)+4 \sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta) - 6 \sin( \theta) \cos( \theta) + 4 \cos ^(2) ( \theta) = \sin( \theta) + 2

collect like terms:


\rm\displaystyle \displaystyle 4 \sin ^(2)( θ) - 2\sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta) + 4 \cos ^(2) ( \theta) = \sin( \theta) + 2

rearrange:


\rm\displaystyle \displaystyle 4 \sin ^(2)( θ) + 4 \cos ^(2) ( \theta) - 2\sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta) + = \sin( \theta) + 2

by Pythagorean theorem we obtain:


\rm\displaystyle \displaystyle 4 - 2\sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta) = \sin( \theta) + 2

cancel 4 from both sides:


\rm\displaystyle \displaystyle - 2\sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta) = \sin( \theta) - 2

move right hand side expression to left hand side and change its sign:


\rm\displaystyle \displaystyle - 2\sin(θ) \cos(θ)+\sin(θ ) - 4\cos( \theta) + 2 = 0

factor out sin:


\rm\displaystyle \displaystyle \sin (θ) (- 2 \cos(θ)+1) - 4\cos( \theta) + 2 = 0

factor out 2:


\rm\displaystyle \displaystyle \sin (θ) (- 2 \cos(θ)+1) + 2(- 2\cos( \theta) + 1 ) = 0

group:


\rm\displaystyle \displaystyle ( \sin (θ) + 2)(- 2 \cos(θ)+1) = 0

factor out -1:


\rm\displaystyle \displaystyle - ( \sin (θ) + 2)(2 \cos(θ) - 1) = 0

divide both sides by -1:


\rm\displaystyle \displaystyle ( \sin (θ) + 2)(2 \cos(θ) - 1) = 0

by Zero product property we acquire:


\begin{cases}\rm\displaystyle \displaystyle \sin (θ) + 2 = 0 \\ \displaystyle2 \cos(θ) - 1= 0 \end{cases}

cancel 2 from the first equation and add 1 to the second equation since -1≤sinθ≤1 the first equation is false for any value of theta


\begin{cases}\rm\displaystyle \displaystyle \sin (θ) \\eq - 2 \\ \displaystyle2 \cos(θ) = 1\end{cases}

divide both sides by 2:


\rm\displaystyle \displaystyle \displaystyle \cos(θ) = (1)/(2)

by unit circle we get:


\rm\displaystyle \displaystyle \displaystyle θ= {60}^( \circ) , {300}^( \circ)

so when θ is 60° a is:


\rm \displaystyle a = \tan( {60}^( \circ) ) - 2 - 3 \sin( {60}^( \circ) ) + 2 \cos( {60}^( \circ) )

recall unit circle:


\rm \displaystyle a = √(3) - 2 - ( 3√(3) )/(2) + 2 \cdot (1)/(2)

simplify which yields:


\rm \displaystyle a = - ( √(3) )/(2) - 1

when θ is 300°


\rm \displaystyle a = \tan( {300}^( \circ) ) - 2 - 3 \sin( {300}^( \circ) ) + 2 \cos( {300}^( \circ) )

remember unit circle:


\rm \displaystyle a = - √(3) - 2 + (3√( 3) )/(2) + 2 \cdot (1)/(2)

simplify which yields:


\rm \displaystyle a = ( √(3) )/(2) - 1

and we are done!

disclaimer: also refer the attachment I did it first before answering the question

Given two points P(sinθ+2, tanθ-2) and Q(4sin²θ+4sinθcosθ+2acosθ, 3sinθ-2cosθ+a). Find-example-1
User Vanangamudi
by
4.0k points