Answer:
In order of increasing angle measure, the fourth roots of -3 + 3√3·i are presented as follows;
![\sqrt[4]{6} \cdot \left[cos\left({-(\pi)/(12) } \right) + i \cdot sin\left(-(\pi)/(12) } \right) \right]](https://img.qammunity.org/2022/formulas/mathematics/high-school/pdwobfzkp3upu6br2z77jjx3b5k13qt6no.png)
![\sqrt[4]{6} \cdot \left[cos\left({(5 \cdot \pi)/(12) } \right) + i \cdot sin\left((5 \cdot\pi)/(12) } \right) \right]](https://img.qammunity.org/2022/formulas/mathematics/high-school/u9e087zbxt45vts5ja811ehd85idula6b1.png)
![\sqrt[4]{6} \cdot \left[cos\left({(11 \cdot \pi)/(12) } \right) + i \cdot sin\left((11 \cdot\pi)/(12) } \right) \right]](https://img.qammunity.org/2022/formulas/mathematics/high-school/mxd9tq3zfhcn2vo4552zvpibyhaafsfucs.png)
![\sqrt[4]{6} \cdot \left[cos\left({(17 \cdot \pi)/(12) } \right) + i \cdot sin\left((17 \cdot\pi)/(12) } \right) \right]](https://img.qammunity.org/2022/formulas/mathematics/high-school/gdomxiolnks6oumhq0x4u43hk3szosgafa.png)
Explanation:
The root of a complex number a + b·i is given as follows;
r = √(a² + b²)
θ = arctan(b/a)
The roots are;
·[cos((θ + 2·k·π)/n) + i·sin((θ + 2·k·π)/n)]
Where;
k = 0, 1, 2,..., n -2, n - 1
For z = -3 + 3√3·i, we have;
r = √((-3)² + (3·√3)²) = 6
θ = arctan((3·√3)/(-3)) = -π/3 (-60°)
Therefore, we have;
![\sqrt[4]{-3 + 3 \cdot √(3) \cdot i \right)} = \sqrt[4]{6} \cdot \left[cos\left((-60 + 2\cdot k \cdot \pi)/(4) \right) + i \cdot sin\left((-60 + 2\cdot k \cdot \pi)/(4) \right) \right]](https://img.qammunity.org/2022/formulas/mathematics/high-school/gx9ovxaetg4pvsprjav0tcg1m6rgxl3ubk.png)
When k = 0, the fourth root is presented as follows;
![\sqrt[4]{6} \cdot \left[cos\left((-(\pi)/(3) + 2\cdot 0 \cdot \pi)/(4) \right) + i \cdot sin\left((-(\pi)/(3) + 2\cdot 0 \cdot \pi)/(4) \right) \right] \\= \sqrt[4]{6} \cdot \left[cos\left({-(\pi)/(12) } \right) + i \cdot sin\left(-(\pi)/(12) } \right) \right]](https://img.qammunity.org/2022/formulas/mathematics/high-school/1t5wjhgezwv08rfsoe6fmwjf25gtm6b2pw.png)
When k = 1 the fourth root is presented as follows;
![\sqrt[4]{6} \cdot \left[cos\left((-(\pi)/(3) + 2\cdot 1 \cdot \pi)/(4) \right) + i \cdot sin\left((-(\pi)/(3) + 2\cdot 1 \cdot \pi)/(4) \right) \right] \\= \sqrt[4]{6} \cdot \left[cos\left({(5 \cdot \pi)/(12) } \right) + i \cdot sin\left((5 \cdot\pi)/(12) } \right) \right]](https://img.qammunity.org/2022/formulas/mathematics/high-school/w30euab3huyc81d33vrj2ktlvcfjysurpm.png)
When k = 2, the fourth root is presented as follows;
![\sqrt[4]{6} \cdot \left[cos\left((-(\pi)/(3) + 2\cdot 2 \cdot \pi)/(4) \right) + i \cdot sin\left((-(\pi)/(3) + 2\cdot 2 \cdot \pi)/(4) \right) \right] \\= \sqrt[4]{6} \cdot \left[cos\left({(11 \cdot \pi)/(12) } \right) + i \cdot sin\left((11 \cdot\pi)/(12) } \right) \right]](https://img.qammunity.org/2022/formulas/mathematics/high-school/vde1mvhac73jf7jf1mub0d8bdyj47yies1.png)
When k = 3, the fourth root is presented as follows;
![\sqrt[4]{6} \cdot \left[cos\left((-(\pi)/(3) + 2\cdot 3 \cdot \pi)/(4) \right) + i \cdot sin\left((-(\pi)/(3) + 2\cdot 3 \cdot \pi)/(4) \right) \right] \\= \sqrt[4]{6} \cdot \left[cos\left({(17 \cdot \pi)/(12) } \right) + i \cdot sin\left((17 \cdot\pi)/(12) } \right) \right]](https://img.qammunity.org/2022/formulas/mathematics/high-school/rp69pi52xsbd2fga3r59jxlc52mosr9gxw.png)