GIVEN: The perimeter of triangle STU is 125.
The segments TW=21 cm
VW=30 cm
VT=24 cm
TO FIND: The length of the segment SU.
SOLUTION:
As corresponding sides must be same. so we have,
![(TV)/(TS)=(TW)/(TU)\\\\ (24)/(TS)=(21)/(TU)\\(TU)/(TS)=(7)/(8)=k(say)\\](https://img.qammunity.org/2022/formulas/mathematics/high-school/3ncwtittr6a8byffcv3q4tcw7xjjkf5y5x.png)
Then, TU=7k and TS=8k
![(TV)/(TS)=(VW)/(SU)\\\\ (24)/(TS)=(30)/(SU)\\(24)/(8k)=(30)/(SU)\\SU=10k](https://img.qammunity.org/2022/formulas/mathematics/high-school/isdziwdxrasjv1y31ex9ns8qmwqbihu0ev.png)
As the perimeter of triangle STU is 125.
so,
8·k+7·k+10·k=125
⇒25.k=125
⇒k=5
Therefore, SU=10×5=50