37.0k views
3 votes
A car dealership offers two types of discounts.

Discount 1: Take 5% off the original price of a car built last year, and then receive a $3,500 rebate.

Discount 2: Take 10% off the original price of a car built this year, and then rece ve a $1,250 rebate.

A customer is deciding between two cars. Car R was bure ast year and has an original price of $25,340. Car 5 was built this vear and has an original price of 522.960. .

Based on this information, which statement is true?

F The customer would pay $19,524 for cars S.

G The customer would pay $24.078 For Cars R.

H The customer would pay $21,824 For Cars S.

J The customer wou d pay $23.10 O Car R.​

User Ranbuch
by
4.4k points

2 Answers

4 votes

Answer:

$24,073

Explanation:

User Bohdan Vorona
by
5.5k points
0 votes

Question:

Based on the same question options as found an online resource, we have;

Statement

G. The customer would pay $24,073 for car R

Answer:

The true statement

G. The customer would pay $24,073 for car R

Explanation:

Discounts are deductions from the original price of a commodity or service

A rebate is a partial refund after payment is made

The discount offered by the car dealership are;

Discount 1;

5% reduction off a car built last year's original price, + $3,500 rebate

Discount 2;

10% reduction off a car built this year's original price + $1,250 rebate

The year car R was built = Last year

The original price for car R = $25,340

Let 'A' represent the amount the customer would pay, let, 'p' represent the price of the car, let 'd' represent the discount offered, and let 'r' represent the rebate

Given that the payment is made before the rebate, we have;

The amount the customer will pay, A = p - (p×d)

Therefore;

The amount the customer would pay for car R = $25,340 - (0.05 × $25,340) = $24,073

The amount the customer would pay for car S = $22,960 - (0.1 × $22,960) = $20,644

Therefore, the true statement, is the customer would pay $24,073

User Awn
by
4.3k points