Given:
The equation of perpendicular line is:
![y=(4)/(3)x-1](https://img.qammunity.org/2022/formulas/mathematics/college/1wncqganbytrys331xs88dx44t5xp0g7in.png)
The required line passes through the point is (-6,-6).
To find:
The equation of the line.
Solution:
The slope intercept form of a line is:
...(i)
Where, m is the slope and b is the y-intercept.
We have,
...(ii)
On comparing (i) and (ii), we get
![m=(4)/(3)](https://img.qammunity.org/2022/formulas/mathematics/college/g016yilhv5bf9vvwct5pw404v8bxufq32o.png)
Slope of given line is
.
The product of slopes of two perpendicular line is -1.
![m_1* (4)/(3)=-1](https://img.qammunity.org/2022/formulas/mathematics/college/6vzu7vdy5h9rgw7jqb8orpq0qvkxug51k0.png)
![m_1=-(3)/(4)](https://img.qammunity.org/2022/formulas/mathematics/college/f0dhg6gq0a1oegqrqj0jbzx9qok44q6y95.png)
So, the slope of the required line is
. It passes through the point is (-6,-6). So, the equation of the line is:
![y-y_1=m_1(x-x_1)](https://img.qammunity.org/2022/formulas/mathematics/college/lxsa4iw2vtkcez10e6ei0h8r1atfqqikbe.png)
![y-(-6)=-(3)/(4)(x-(-6))](https://img.qammunity.org/2022/formulas/mathematics/college/geppytqp2ca0w6ghhw3seab4v5zdu53xgn.png)
![y+6=-(3)/(4)(x+6)](https://img.qammunity.org/2022/formulas/mathematics/college/5kjx5t4kgfocy2brvq0jpwpd4mcii0bqxc.png)
On further simplification, we get
![y+6=-(3)/(4)(x)-(3)/(4)(6)](https://img.qammunity.org/2022/formulas/mathematics/college/24cqyh6mwtgvw5zyzec30p7neib8p4eslq.png)
![y+6=-(3)/(4)(x)-4.5](https://img.qammunity.org/2022/formulas/mathematics/college/ka6bjsvuvrebd2wkum5xr3agmhnflv00d0.png)
![y=-(3)/(4)(x)-4.5-6](https://img.qammunity.org/2022/formulas/mathematics/college/t22oec5w5ylsdq9lnqk6tbh0ct7p88qd1g.png)
![y=-(3)/(4)(x)-10.5](https://img.qammunity.org/2022/formulas/mathematics/college/4mtswwo3v8trxxzmevcjw7amfoj7zag0gp.png)
Therefore, equations of the required line are
and
.