97.3k views
4 votes
Solve each inequality and show work.

1) 4x - 2 > 2x + 8

2) -3x - 6 > 4x - 20

3) 4(x + 1) < 3x - 2

4) 2x + 3 + x < -2x + 1 + 12

5) 2(x - 1) > 4x + 4 - 5x

6) 2 + 4x -7 < 8x + 2 - 2x

User Bystysz
by
5.5k points

2 Answers

2 votes

Answer: Use the app photo math, you just take a picture and it gives you the answer and shows you the steps:)

1) x> 5

2) x< 2

3) x<-6

4) x< 2

5) x> 2

6) x> - 7/2

Explanation:

See the images below for the work:) The images will be in order with the number the first problem will be the answer to the first.

Solve each inequality and show work. 1) 4x - 2 > 2x + 8 2) -3x - 6 > 4x - 20 3) 4(x-example-1
Solve each inequality and show work. 1) 4x - 2 > 2x + 8 2) -3x - 6 > 4x - 20 3) 4(x-example-2
Solve each inequality and show work. 1) 4x - 2 > 2x + 8 2) -3x - 6 > 4x - 20 3) 4(x-example-3
Solve each inequality and show work. 1) 4x - 2 > 2x + 8 2) -3x - 6 > 4x - 20 3) 4(x-example-4
Solve each inequality and show work. 1) 4x - 2 > 2x + 8 2) -3x - 6 > 4x - 20 3) 4(x-example-5
User Cory Collier
by
5.1k points
1 vote

Answer:


\sf 1)\:4x - 2 > 2x + 8

Add 2 from both sides:


\sf 4x-2+2>2x+8+2


\sf 4x>2x+10

Subtract 2x from both sides:


\sf 4x-2x>2x+10-2x


\sf 2x>10

Divide both sides by 2:


\sf \cfrac{2x}{2}>\cfrac{10}{2}


\boxed{\sf x>5}

_______________________________


\sf 2)\: -3x - 6 > 4x - 20

Add 6 from both sides:


\sf -3x-6+6>4x-20+6


\sf -3x>4x-14

Subtract 4x from both sides:


\sf -3x-4x>4x-14-4x


\sf -7x>-14

Multiply both sides by -1:


\sf\left(-7x\right)\left(-1\right)<\left(-14\right)\left(-1\right)


\sf 7x<14

Divide both sides by 7:


\sf \cfrac{7x}{7}<\cfrac{14}{7}


\boxed{\sf x<2}

_______________________________


\sf 3)\: 4(x + 1) < 3x - 2

Apply distributive property:


\sf 4x+4<3x-2

Subtract 4 from both sides:


\sf 4x+4-4<3x-2-4


\sf 4x<3x-6

Subtract 3x from both sides:


\sf 4x-3x<3x-6-3x


\boxed{\sf x<-6}

_______________________________


\sf 4)\: 2x + 3 + x < -2x + 1 + 12

Combine like terms:


\sf (2x+x)= 3x


\sf( 1+12)=13


\sf 3x+3<-2x+13

Subtract 3 from both sides:


\sf 3x+3-3<-2x+13-3


\sf 3x<-2x+10

Add 2x from both sides:


\sf 3x+2x<-2x+10+2x


\sf 5x<10

Divide both sides by 5:


\sf \cfrac{5x}{5}<\cfrac{10}{5}


\boxed{\sf x<2}

________________________________


\sf 5)\: 2(x - 1) > 4x + 4 - 5x

Combine like terms:


\sf (4x-5x)=-x


\sf 2\left(x-1\right)>-x+4

Apply distributive property:


\sf 2x-2>-x+4

Add 2 from both sides:


\sf 2x-2+2>-x+4+2


\sf 2x>-x+6

Add x from both sides:


\sf 2x+x>-x+6+x


\sf 3x>6

Divide both sides by 3:


\sf \cfrac{3x}{3}>\cfrac{6}{3}


\boxed{\sf x>2}

_______________________________


\sf 6)\: 2 + 4x -7 < 8x + 2 - 2x

Subtract 2 from both sides:


\sf 2+4x-7-2<8x+2-2x-2


\sf 4x-7<8x-2x

Combine like terms:


\sf (8x-2x)=6x


\sf 4x-7<6x

Add 7 from both sides:


\sf 4x-7+7<6x+7


\sf 4x<6x+7

Subtract 6x from both sides:


\sf 4x-6x<6x+7-6x


\sf -2x<7

Multiply both sides by -1:


\sf \left(-2x\right)\left(-1\right)>7\left(-1\right)


\sf 2x>-7

Divide both sides by 2:


\sf \cfrac{2x}{2}>\cfrac{-7}{2}


\boxed{\sf x>-(7)/(2)}

_______________________________________

User LNQ
by
4.4k points