93.6k views
4 votes
What is the wall height for H??

What is the wall height for H??-example-1

2 Answers

7 votes

To find:-

The height of the wall "h".

Solution:-


{\boxed{\mathcal{\red{The\:height\:of\:the\:wall\:

Step-by-step explanation:


\sf\purple{Using\:Pythagoras \:theorem, \:we\:have}


( {Perpendicular})^(2) + ( {Base})^(2) = ( {Hypotenuse})^(2) \\ ➡ \: {h}^(2) + ({35 \: ft})^(2) = ({50 \: ft})^(2) \\ ➡ \: {h}^(2) + 1225 \: {ft}^(2) = 2500 \: {ft}^(2) \\ ➡ \: {h}^(2) = 2500 {ft}^(2) - 1225 \: {ft}^(2) \\ ➡ \: {h}^(2) = 1275 \: {ft}^(2) \\ ➡ \: h \: = \sqrt{1275 \: {ft}^(2) } \\ ➡ \: h = 35.707\: ft \: \\ ➡ \: h = 35.71\: ft


\sf\red{Therefore\:the\:height\:of\:the\:wall\:

To verify :-


( {35.71 \: ft})^(2) + ( {35 \: ft})^(2) = ({50 \: ft})^(2) \\ ✒ \: 1275 \: {ft}^(2) + 1225 \: {ft}^(2) \: = 2500 \: {ft}^(2) \\ ✒ \: 2500 \: {ft}^(2) = 2500 \: {ft}^(2) \\ ✒ \: L.H.S.=R. H. S

Hence verified.


\circ \: \: { \underline{ \boxed{ \sf{ \color{green}{Happy\:learning.}}}}}∘

What is the wall height for H??-example-1
User Brian Roach
by
7.9k points
4 votes

Answer:

Explanation:

Side "h" ( wall height ) is 35

User Kcsquared
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories