93.6k views
4 votes
What is the wall height for H??

What is the wall height for H??-example-1

2 Answers

7 votes

To find:-

The height of the wall "h".

Solution:-


{\boxed{\mathcal{\red{The\:height\:of\:the\:wall\:

Step-by-step explanation:


\sf\purple{Using\:Pythagoras \:theorem, \:we\:have}


( {Perpendicular})^(2) + ( {Base})^(2) = ( {Hypotenuse})^(2) \\ ➡ \: {h}^(2) + ({35 \: ft})^(2) = ({50 \: ft})^(2) \\ ➡ \: {h}^(2) + 1225 \: {ft}^(2) = 2500 \: {ft}^(2) \\ ➡ \: {h}^(2) = 2500 {ft}^(2) - 1225 \: {ft}^(2) \\ ➡ \: {h}^(2) = 1275 \: {ft}^(2) \\ ➡ \: h \: = \sqrt{1275 \: {ft}^(2) } \\ ➡ \: h = 35.707\: ft \: \\ ➡ \: h = 35.71\: ft


\sf\red{Therefore\:the\:height\:of\:the\:wall\:

To verify :-


( {35.71 \: ft})^(2) + ( {35 \: ft})^(2) = ({50 \: ft})^(2) \\ ✒ \: 1275 \: {ft}^(2) + 1225 \: {ft}^(2) \: = 2500 \: {ft}^(2) \\ ✒ \: 2500 \: {ft}^(2) = 2500 \: {ft}^(2) \\ ✒ \: L.H.S.=R. H. S

Hence verified.


\circ \: \: { \underline{ \boxed{ \sf{ \color{green}{Happy\:learning.}}}}}∘

What is the wall height for H??-example-1
User Brian Roach
by
4.8k points
4 votes

Answer:

Explanation:

Side "h" ( wall height ) is 35

User Kcsquared
by
4.7k points