131k views
3 votes
Prove that; tan20+4sin20= square root of3

User Distwo
by
4.3k points

1 Answer

3 votes

tan( 20 ) + 4 Sin( 20 ) =

( Sin( 20 ) / Cos( 20 ) ) + 4 Sin( 20 ) =

Sin( 20 ) + 4 Sin( 20 ).Cos( 20 ) / Cos( 20 ) =

Sin( 20 ) + 2 × 2 Sin(20).Cos(20)/ Cos(20) =

Sin( 20 ) + 2 × Sin( 40 ) / Cos( 20 ) =

Sin( 20 ) + 2Sin( 40 ) / Cos( 20 ) =

Sin( 20 ) + 2Cos( 50 ) / Cos ( 20 ) =

Sin( 20 ) + 2Cos( 20 + 30 ) / Cos( 20 ) =

________________________________

2 × Cos( 30 + 20 ) =

2 × [ Cos(30).Cos(20) - Sin(30).Sin(20) ] =

2 × [ √3/2 × Cos(20) - 1/2 × Sin(20) ] =

√3 Cos(20) - Sin(20)

_________________________________

Sin( 20 ) + 2Cos ( 20 + 30 ) / Cos( 20 ) =

Sin( 20 ) + 3 Cos(20) - Sin(20) / Cos(20) =

Sin(20) - Sin(20) + √3 Cos(20) / Cos(20) =

0 + √3 Cos(20) / Cos(20) =

√3 Cos(20) / Cos(20) =

Cos(20) simplifies from the numerator and denominator of fraction

√3 × 1 / 1 =

√3

And we're done ....

User Miha Jamsek
by
4.5k points