Answer:
B
Explanation:
We can use the standard form of an exponential function:
![y=a(b)^x](https://img.qammunity.org/2022/formulas/mathematics/high-school/p4swm3gboenvysmc0qai668q4lbuli4lu8.png)
The point (0, 18) tells us that y = 18 when x = 0. Hence:
![\displaystyle 18=a(b)^0](https://img.qammunity.org/2022/formulas/mathematics/college/dp5flhhvwlv4m7eogr93ecmljux2kleaat.png)
Simplify:
![a=18](https://img.qammunity.org/2022/formulas/mathematics/college/ac68gi6psz9l3j57odervhxk4l71q53ke9.png)
Our equation is now:
![\displaystyle y=18(b)^x](https://img.qammunity.org/2022/formulas/mathematics/college/4j58i0upq5jdd6n08xjp058l1dwojkopc2.png)
Next, the point (-1, 15) tells us that y = 15 when x = -1. Hence:
![15=18(b)^(-1)](https://img.qammunity.org/2022/formulas/mathematics/college/6tdq3o8jgvjqawhnlk63vrrgkt2tpyv0en.png)
Isolate the variable:
![\displaystyle (1)/(b)=(5)/(6)](https://img.qammunity.org/2022/formulas/mathematics/college/400ig44ng9437t5u8pozrh3cbiexwtoe2u.png)
Hence:
![\displaystyle b=(6)/(5)](https://img.qammunity.org/2022/formulas/mathematics/college/4xxla5c9v8c90mz7wb6b7wm4y3xcx6f86s.png)
By substitution:
![\displaystyle y=18\left((6)/(5)\right)^x](https://img.qammunity.org/2022/formulas/mathematics/college/tdeovmrfasagybpzo9f3lbyklg7citn428.png)
Our answer is B.