Answer:
![(8-√(6) )/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/r0vyzne5rxu8fbxop8tc2knqantnajd60f.png)
Explanation:
To rationalize the denominator, we need to multiply both the numerator and denominator by the conjugate of the denominator, which in this is 2 - √6.
We can write the expression:
![(3√(6)+5 )/(2+√(6)) *(2-√(6))/(2-√(6) )](https://img.qammunity.org/2022/formulas/mathematics/college/376fhv1qlyjusy3ny6ki70qa6syeoys6hp.png)
We can use the special product of the difference of squares to simplify the denominator:
![(2 + √(6))(2-√(6)) = 2^2 - (√(6))^2 =4 - 6 = -2](https://img.qammunity.org/2022/formulas/mathematics/college/hx7vawfronkq9guc4am3k9sgawcz4yxoci.png)
We can use distributive for the numerator:
![(3√(6)+5)(2-√(6))=6√(6) -18+ 10-5√(6) =√(6) -8](https://img.qammunity.org/2022/formulas/mathematics/college/stengvo1qi2rnqycjvi1wby4til7f2g7nw.png)
Now we can rewrite the fraction:
![(√(6)-8 )/(-2) =(8-√(6) )/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/hddtf80r5lotzodrlk07k2ypmy5b9htoxx.png)