40.3k views
5 votes
If dy/dx = ysec^2(x) and y= 5 when x = 0, then y=?

А. e^tanx +4
B. e^tanx +5
C. 5e^tanx
D. tanx + 5
E. tanx + 5e^x

User Quanturium
by
4.8k points

1 Answer

3 votes

Answer:

C.
\displaystyle y = 5e^(tan(x))

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

Algebra I

  • Functions
  • Function Notation
  • |Absolute Values|
  • Anything to the 0th power is 1

Algebra II

  • Logarithms and Natural logs
  • Euler's number e

Calculus

Derivatives

Derivative Notation

Trig Derivatives

Differential Equations

  • Separation of variables
  • General and particular solutions

Antiderivatives - Integration

Integration Constant C

Trig Integration

Logarithmic Integration

Explanation:

Step 1: Define

Identify


\displaystyle (dy)/(dx) = ysec^2(x)

x = 0, y = 5

Step 2: Rewrite Differential

Separation of variables

  1. [Division Property of Equality] Isolate y terms together:
    \displaystyle (1)/(y)(dy)/(dx) = sec^2(x)
  2. [Multiplication Property of Equality] Isolate x terms together:
    \displaystyle (1)/(y)dy = sec^2(x)dx

Step 3: Find General Solution

  1. [Equality Property] Integrate both sides:
    \displaystyle \int {(1)/(y)} \, dy = \int {sec^2(x)} \, dx
  2. [1st Integral] Integrate [Logarithmic Integration]:
    \displaystyle ln|y| = \int {sec^2(x)} \, dx
  3. [2nd Integral] Integrate [Trig Integration]:
    \displaystyle ln|y| = tan(x) + C
  4. [Equality Property] e both sides:
    \displaystyle e^(ln|y|) = e^(tan(x) + C)
  5. Simplify:
    \displaystyle |y| = Ce^(tan(x))
  6. Rewrite:
    \displaystyle y = \pm Ce^(tan(x))

Step 4: Find Particular Solution

  1. Substitute in variables [Function]:
    \displaystyle |5| = Ce^(tan(0))
  2. Evaluate absolute value:
    \displaystyle 5 = Ce^(tan(0))
  3. Evaluate trig:
    \displaystyle 5 = Ce^0
  4. Evaluate exponent:
    \displaystyle 5 = C(1)
  5. Multiply:
    \displaystyle 5 = C
  6. Rewrite:
    \displaystyle C =5
  7. Substitute in C [General Solution]:
    \displaystyle y = 5e^(tan(x))

∴ Our answer is C.

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Differential Equations

Book: College Calculus 10e

User Gdp
by
5.4k points