Answer:

General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Algebra I
- Functions
- Function Notation
Calculus
Derivatives
Derivative Notation
Derivative Rule [Quotient Rule]:
![\displaystyle (d)/(dx) [(f(x))/(g(x)) ]=(g(x)f'(x)-g'(x)f(x))/(g^2(x))](https://img.qammunity.org/2022/formulas/mathematics/high-school/hrfl3gpx3dh352g7a9uj6guyxz9uxwhvl3.png)
Derivative Rule [Chain Rule]:
![\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)](https://img.qammunity.org/2022/formulas/mathematics/high-school/vue68srn3fe6bds4idxorm97z7tgwelamw.png)
MacLaurin/Taylor Polynomials
- Approximating Transcendental and Elementary functions
- MacLaurin Polynomial:

- Taylor Polynomial:

Explanation:
*Note: I will not be showing the work for derivatives as it is relatively straightforward. If you request for me to show that portion, please leave a comment so I can add it. I will also not show work for elementary calculations.
Step 1: Define
Identify
f(x) = ln(1 - x)
Center: x = 0
n = 3
Step 2: Differentiate
- [Function] 1st Derivative:

- [Function] 2nd Derivative:

- [Function] 3rd Derivative:

Step 3: Evaluate Functions
- Substitute in center x [Function]:

- Simplify:

- Substitute in center x [1st Derivative]:

- Simplify:

- Substitute in center x [2nd Derivative]:

- Simplify:

- Substitute in center x [3rd Derivative]:

- Simplify:

Step 4: Write Taylor Polynomial
- Substitute in derivative function values [MacLaurin Polynomial]:

- Simplify:

Topic: AP Calculus BC (Calculus I/II)
Unit: Taylor Polynomials and Approximations
Book: College Calculus 10e