Answer:
![5.7\ cm](https://img.qammunity.org/2022/formulas/mathematics/college/9jjbsj40rgrm2dful6q38s73k11x0ywdcz.png)
Explanation:
Given
Rectangle has an area of
![19.38\ cm^2](https://img.qammunity.org/2022/formulas/mathematics/college/gafdksq88pcp2iksp59q3ra6n99py2v7b5.png)
Suppose rectangle length and width are
and
![w](https://img.qammunity.org/2022/formulas/mathematics/high-school/weoytzdkt7s5o5bh9m9pouiih9219p1w9q.png)
If each side is increased by
![1.50\ cm](https://img.qammunity.org/2022/formulas/mathematics/college/s1vtk6nau7wcapohtmya4lf45x2mvxi6gz.png)
Area becomes
![A_2=35.28\ cm^2](https://img.qammunity.org/2022/formulas/mathematics/college/y8rioovpbm2udj7ffjtjmsy4icvs11802z.png)
We can write
![\Rightarrow lw=19.38\quad \ldots(i)\\\\\Rightarrow (l+1.5)(w+1.5)=35.28\\\Rightarrow lw+1.5(l+w)+1.5^2=35.28\\\text{use (i) for}\ lw\\\Rightarrow 19.38+1.5(l+w)=35.28-2.25\\\Rightarrow l+w=9.1\quad \ldots(ii)](https://img.qammunity.org/2022/formulas/mathematics/college/jfkbk3pdo6wdzrysn54wz09qgp5jlhhaqy.png)
Substitute the value of width from (ii) in equation (i)
![\Rightarrow l(9.1-l)=19.38\\\Rightarrow l^2-9.1l+19.38=0\\\\\Rightarrow l=(9.1\pm√((-9.1)^2-4(1)(19.38)))/(2* 1)\\\\\Rightarrow l=(9.1\pm√(5.29))/(2)\\\\\Rightarrow l=(9.1\pm2.3)/(2)\\\\\Rightarrow l=3.4,\ 5.7](https://img.qammunity.org/2022/formulas/mathematics/college/tpr9me9qc09f6rrxe10hm1p8qtk8i1cthx.png)
Width corresponding to these lengths
![w=5.7,\ 3.4](https://img.qammunity.org/2022/formulas/mathematics/college/4rxofzuna9b3ebl7o9elezo3gx5wgf4nbl.png)
Therfore, we can write the length of the longer side is
![5.7\ cm](https://img.qammunity.org/2022/formulas/mathematics/college/9jjbsj40rgrm2dful6q38s73k11x0ywdcz.png)