55.3k views
0 votes
Find the function y = f(t) passing through the point (0, 18) with the given first derivative.

dy/dt = 1/8 t

y = ?

User Merricat
by
4.6k points

1 Answer

3 votes

Answer:


\displaystyle y = (t^2)/(16) + 18

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

Algebra I

  • Functions
  • Function Notation
  • Coordinates (x, y)

Calculus

Derivatives

Derivative Notation

Antiderivatives - Integrals

Integration Constant C

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Explanation:

Step 1: Define

Identify

Point (0, 18)


\displaystyle (dy)/(dt) = (1)/(8) t

Step 2: Find General Solution

Use integration

  1. [Derivative] Rewrite:
    \displaystyle dy = (1)/(8) t\ dt
  2. [Equality Property] Integrate both sides:
    \displaystyle \int dy = \int {(1)/(8) t} \, dt
  3. [Left Integral] Integrate [Integration Rule - Reverse Power Rule]:
    \displaystyle y = \int {(1)/(8) t} \, dt
  4. [Right Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle y = (1)/(8)\int {t} \, dt
  5. [Right Integral] Integrate [Integration Rule - Reverse Power Rule]:
    \displaystyle y = (1)/(8)((t^2)/(2)) + C
  6. Multiply:
    \displaystyle y = (t^2)/(16) + C

Step 3: Find Particular Solution

  1. Substitute in point [Function]:
    \displaystyle 18 = (0^2)/(16) + C
  2. Simplify:
    \displaystyle 18 = 0 + C
  3. Add:
    \displaystyle 18 = C
  4. Rewrite:
    \displaystyle C = 18
  5. Substitute in C [Function]:
    \displaystyle y = (t^2)/(16) + 18

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Integration

Book: College Calculus 10e

User Erick Asto Oblitas
by
4.0k points